Data:K11n27/Integral Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 18: Line 18:
|<math>r=0</math>
|<math>r=0</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|- align=center
|- align=center
|<math>r=1</math>
|<math>r=1</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=2</math>
|<math>r=2</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^2\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|- align=center
|- align=center
|<math>r=3</math>
|<math>r=3</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^2\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=4</math>
|<math>r=4</math>
|<math>{\mathbb Z}</math>
|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=5</math>
|<math>r=5</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|- align=center
|- align=center

Latest revision as of 08:21, 27 June 2006

[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]