Data:L10a156/Integral Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 10: Line 10:
|- align=center
|- align=center
|<math>r=-4</math>
|<math>r=-4</math>
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|- align=center
|- align=center
|<math>r=-3</math>
|<math>r=-3</math>
|bgcolor=yellow|<math>{\mathbb Z}^5\oplus{\mathbb Z}_2^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=-2</math>
|<math>r=-2</math>
|bgcolor=yellow|<math>{\mathbb Z}^8\oplus{\mathbb Z}_2^5</math>
|bgcolor=yellow|<math>{\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}</math>
|bgcolor=yellow|<math>{\mathbb Z}^6</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}</math>
|- align=center
|- align=center
|<math>r=-1</math>
|<math>r=-1</math>
|bgcolor=yellow|<math>{\mathbb Z}^8\oplus{\mathbb Z}_2^7</math>
|bgcolor=yellow|<math>{\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}</math>
|bgcolor=yellow|<math>{\mathbb Z}^7</math>
|bgcolor=yellow|<math>{\mathbb Z}^{7}</math>
|- align=center
|- align=center
|<math>r=0</math>
|<math>r=0</math>
|bgcolor=yellow|<math>{\mathbb Z}^10\oplus{\mathbb Z}_2^8</math>
|bgcolor=yellow|<math>{\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}</math>
|bgcolor=yellow|<math>{\mathbb Z}^10</math>
|bgcolor=yellow|<math>{\mathbb Z}^{10}</math>
|- align=center
|- align=center
|<math>r=1</math>
|<math>r=1</math>
|bgcolor=yellow|<math>{\mathbb Z}^7\oplus{\mathbb Z}_2^8</math>
|bgcolor=yellow|<math>{\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8}</math>
|bgcolor=yellow|<math>{\mathbb Z}^8</math>
|bgcolor=yellow|<math>{\mathbb Z}^{8}</math>
|- align=center
|- align=center
|<math>r=2</math>
|<math>r=2</math>
|bgcolor=yellow|<math>{\mathbb Z}^6\oplus{\mathbb Z}_2^7</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7}</math>
|bgcolor=yellow|<math>{\mathbb Z}^8</math>
|bgcolor=yellow|<math>{\mathbb Z}^{8}</math>
|- align=center
|- align=center
|<math>r=3</math>
|<math>r=3</math>
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2^5</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}</math>
|bgcolor=yellow|<math>{\mathbb Z}^5</math>
|bgcolor=yellow|<math>{\mathbb Z}^{5}</math>
|- align=center
|- align=center
|<math>r=4</math>
|<math>r=4</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^3</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=5</math>
|<math>r=5</math>

Latest revision as of 09:34, 27 June 2006

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}