Data:L10a156/Integral Khovanov Homology: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 10: | Line 10: | ||
|- align=center |
|- align=center |
||
|<math>r=-4</math> |
|<math>r=-4</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}</math> |
|bgcolor=yellow|<math>{\mathbb Z}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=-3</math> |
|<math>r=-3</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^5\oplus{\mathbb Z}_2^3</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^3</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=-2</math> |
|<math>r=-2</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^8\oplus{\mathbb Z}_2^5</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^6</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{6}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=-1</math> |
|<math>r=-1</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^8\oplus{\mathbb Z}_2^7</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^7</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{7}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=0</math> |
|<math>r=0</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^10\oplus{\mathbb Z}_2^8</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^10</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{10}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=1</math> |
|<math>r=1</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^7\oplus{\mathbb Z}_2^8</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^8</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{8}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=2</math> |
|<math>r=2</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^6\oplus{\mathbb Z}_2^7</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^8</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{8}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=3</math> |
|<math>r=3</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2^5</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^5</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{5}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=4</math> |
|<math>r=4</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^3</math> |
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{3}</math> |
||
|bgcolor=yellow|<math>{\mathbb Z}^3</math> |
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math> |
||
|- align=center |
|- align=center |
||
|<math>r=5</math> |
|<math>r=5</math> |
Latest revision as of 09:34, 27 June 2006
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-1} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1} |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-5} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} | |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}} |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}} | |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5}} | |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}} |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}} |
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} |