Data:L10n57/Integral Khovanov Homology: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 32: | Line 32: | ||
|- align=center |
|- align=center |
||
|<math>r=0</math> |
|<math>r=0</math> |
||
|<math>{\mathbb Z}^2</math> |
|<math>{\mathbb Z}^{2}</math> |
||
|<math>{\mathbb Z}^3</math> |
|<math>{\mathbb Z}^{3}</math> |
||
|<math>{\mathbb Z}</math> |
|<math>{\mathbb Z}</math> |
||
|- align=center |
|- align=center |
||
Latest revision as of 08:36, 27 June 2006
| [math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] | [math]\displaystyle{ i=-2 }[/math] | [math]\displaystyle{ i=0 }[/math] | [math]\displaystyle{ i=2 }[/math] |
| [math]\displaystyle{ r=-5 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | ||
| [math]\displaystyle{ r=-4 }[/math] | [math]\displaystyle{ {\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | |
| [math]\displaystyle{ r=-3 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | ||
| [math]\displaystyle{ r=-2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=-1 }[/math] | [math]\displaystyle{ {\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=0 }[/math] | [math]\displaystyle{ {\mathbb Z}^{2} }[/math] | [math]\displaystyle{ {\mathbb Z}^{3} }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=1 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |
| [math]\displaystyle{ r=2 }[/math] | [math]\displaystyle{ {\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | |
| [math]\displaystyle{ r=3 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] | ||
| [math]\displaystyle{ r=4 }[/math] | [math]\displaystyle{ {\mathbb Z}_2 }[/math] | [math]\displaystyle{ {\mathbb Z} }[/math] |