Data:L10n102/Integral Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 18: Line 18:
|<math>r=-8</math>
|<math>r=-8</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^4</math>
|bgcolor=yellow|<math>{\mathbb Z}^{4}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=-7</math>
|<math>r=-7</math>
Line 28: Line 28:
|<math>r=-6</math>
|<math>r=-6</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}^3\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}</math>
|- align=center
|- align=center
|<math>r=-5</math>
|<math>r=-5</math>
|
|
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^3</math>
|bgcolor=yellow|<math>{\mathbb Z}\oplus{\mathbb Z}_2^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}^3</math>
|bgcolor=yellow|<math>{\mathbb Z}^{3}</math>
|- align=center
|- align=center
|<math>r=-4</math>
|<math>r=-4</math>
|<math>{\mathbb Z}^3</math>
|<math>{\mathbb Z}^{3}</math>
|bgcolor=yellow|<math>{\mathbb Z}^6\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{6}\oplus{\mathbb Z}_2</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=-3</math>
|<math>r=-3</math>
|<math>{\mathbb Z}</math>
|<math>{\mathbb Z}</math>
|bgcolor=yellow|<math>{\mathbb Z}_2^2</math>
|bgcolor=yellow|<math>{\mathbb Z}_2^{2}</math>
|bgcolor=yellow|<math>{\mathbb Z}^2</math>
|bgcolor=yellow|<math>{\mathbb Z}^{2}</math>
|- align=center
|- align=center
|<math>r=-2</math>
|<math>r=-2</math>

Latest revision as of 08:37, 27 June 2006

[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-6 }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math]
[math]\displaystyle{ r=-10 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]