L11a313: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 313 | |
k = 313 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-11,4,-10,5,-7:8,-1,2,-3,6,-5,9,-8,10,-4,11,-6,7,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-11,4,-10,5,-7:8,-1,2,-3,6,-5,9,-8,10,-4,11,-6,7,-9/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 313]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 313]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:20, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a313's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X18,6,19,5 X14,8,15,7 X20,13,21,14 X8,21,1,22 X16,10,17,9 X22,16,9,15 X6,18,7,17 X4,20,5,19 |
| Gauss code | {1, -2, 3, -11, 4, -10, 5, -7}, {8, -1, 2, -3, 6, -5, 9, -8, 10, -4, 11, -6, 7, -9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(1)+t(2)) (t(1) t(2)+1) \left(t(2)^2-t(2)+1\right)}{t(1)^{3/2} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{11/2}+3 q^{9/2}-6 q^{7/2}+10 q^{5/2}-13 q^{3/2}+14 \sqrt{q}-\frac{16}{\sqrt{q}}+\frac{13}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^5-z^5 a^{-3} -3 a^3 z^3-3 z^3 a^{-3} -2 a^3 z-2 z a^{-3} +a z^7+z^7 a^{-1} +4 a z^5+4 z^5 a^{-1} +5 a z^3+5 z^3 a^{-1} +2 a z+2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^{10} a^{-2} -2 z^{10}-5 a z^9-9 z^9 a^{-1} -4 z^9 a^{-3} -7 a^2 z^8+z^8 a^{-2} -3 z^8 a^{-4} -3 z^8-7 a^3 z^7+7 a z^7+30 z^7 a^{-1} +15 z^7 a^{-3} -z^7 a^{-5} -5 a^4 z^6+13 a^2 z^6+13 z^6 a^{-2} +12 z^6 a^{-4} +19 z^6-3 a^5 z^5+12 a^3 z^5+4 a z^5-33 z^5 a^{-1} -18 z^5 a^{-3} +4 z^5 a^{-5} -a^6 z^4+5 a^4 z^4-9 a^2 z^4-16 z^4 a^{-2} -14 z^4 a^{-4} -17 z^4+3 a^5 z^3-11 a^3 z^3-11 a z^3+19 z^3 a^{-1} +12 z^3 a^{-3} -4 z^3 a^{-5} +a^6 z^2-a^4 z^2+7 z^2 a^{-2} +5 z^2 a^{-4} +4 z^2+4 a^3 z+4 a z-4 z a^{-1} -4 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



