L11a514: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 514 | |
k = 514 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,3,-6,2,-11:10,-1,5,-9,4,-8:11,-3,6,-2,7,-5,8,-4,9,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,3,-6,2,-11:10,-1,5,-9,4,-8:11,-3,6,-2,7,-5,8,-4,9,-7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 52: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 514]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 514]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:36, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a514's Link Presentations]
| Planar diagram presentation | X8192 X16,5,17,6 X14,3,15,4 X20,12,21,11 X18,10,19,9 X4,15,5,16 X22,18,13,17 X12,20,7,19 X10,22,11,21 X2738 X6,13,1,14 |
| Gauss code | {1, -10, 3, -6, 2, -11}, {10, -1, 5, -9, 4, -8}, {11, -3, 6, -2, 7, -5, 8, -4, 9, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^2 w^2-u^2 v^2 w+u^2 v w^3-3 u^2 v w^2+2 u^2 v w-u^2 w^3+2 u^2 w^2-2 u v^2 w^2+3 u v^2 w-u v^2-2 u v w^3+5 u v w^2-5 u v w+2 u v+u w^3-3 u w^2+2 u w-2 v^2 w+v^2-2 v w^2+3 v w-v+w^2-w}{u v w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^4+3 q^3-5 q^2+10 q-12+15 q^{-1} -15 q^{-2} +14 q^{-3} -10 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 z^2+a^6-2 a^4 z^4-3 a^4 z^2+a^4 z^{-2} +a^4+a^2 z^6+a^2 z^4-z^4 a^{-2} -4 a^2 z^2-2 a^2 z^{-2} -2 z^2 a^{-2} -6 a^2+z^6+3 z^4+4 z^2+ z^{-2} +4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+6 a z^9+3 z^9 a^{-1} +6 a^4 z^8+8 a^2 z^8+3 z^8 a^{-2} +5 z^8+7 a^5 z^7+6 a^3 z^7-11 a z^7-9 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-5 a^4 z^6-24 a^2 z^6-13 z^6 a^{-2} -26 z^6+3 a^7 z^5-8 a^5 z^5-25 a^3 z^5-5 a z^5+5 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-8 a^6 z^4-a^4 z^4+23 a^2 z^4+18 z^4 a^{-2} +33 z^4-2 a^7 z^3+4 a^5 z^3+22 a^3 z^3+14 a z^3+2 z^3 a^{-1} +4 z^3 a^{-3} -a^8 z^2+7 a^6 z^2-a^4 z^2-21 a^2 z^2-8 z^2 a^{-2} -20 z^2-9 a^3 z-9 a z-2 a^6+3 a^4+11 a^2+7+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



