L11a52: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 52 | |
k = 52 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,5,-3:4,-1,2,-11,9,-5,6,-8,7,-4,10,-9,11,-2,3,-6,8,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,5,-3:4,-1,2,-11,9,-5,6,-8,7,-4,10,-9,11,-2,3,-6,8,-7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 52]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 52]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:37, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a52's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X14,6,15,5 X10,4,11,3 X20,12,21,11 X22,14,5,13 X12,22,13,21 X16,9,17,10 X2,16,3,15 X8,17,9,18 |
| Gauss code | {1, -10, 5, -3}, {4, -1, 2, -11, 9, -5, 6, -8, 7, -4, 10, -9, 11, -2, 3, -6, 8, -7} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 (t(1)-1) (t(2)-1) \left(t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{15/2}+3 q^{13/2}-6 q^{11/2}+9 q^{9/2}-11 q^{7/2}+12 q^{5/2}-12 q^{3/2}+10 \sqrt{q}-\frac{8}{\sqrt{q}}+\frac{4}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{1}{q^{7/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-5} -3 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +z^7 a^{-3} +4 z^5 a^{-3} +5 z^3 a^{-3} +5 z a^{-3} +3 a^{-3} z^{-1} +z^7 a^{-1} -a z^5+4 z^5 a^{-1} -3 a z^3+3 z^3 a^{-1} -3 z a^{-1} +2 a z^{-1} -4 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -4 z^3 a^{-7} +z a^{-7} +9 z^6 a^{-6} -13 z^4 a^{-6} +5 z^2 a^{-6} - a^{-6} +10 z^7 a^{-5} -20 z^5 a^{-5} +9 z^3 a^{-5} -2 z a^{-5} + a^{-5} z^{-1} +8 z^8 a^{-4} -16 z^6 a^{-4} -z^4 a^{-4} +8 z^2 a^{-4} -3 a^{-4} +5 z^9 a^{-3} -9 z^7 a^{-3} -9 z^5 a^{-3} +16 z^3 a^{-3} -9 z a^{-3} +3 a^{-3} z^{-1} +2 z^{10} a^{-2} +a^2 z^8-5 a^2 z^6-18 z^6 a^{-2} +7 a^2 z^4+17 z^4 a^{-2} -2 a^2 z^2+2 z^2 a^{-2} -3 a^{-2} +3 a z^9+8 z^9 a^{-1} -17 a z^7-36 z^7 a^{-1} +31 a z^5+48 z^5 a^{-1} -18 a z^3-16 z^3 a^{-1} -a z-7 z a^{-1} +2 a z^{-1} +4 a^{-1} z^{-1} +2 z^{10}-7 z^8+2 z^6+9 z^4-3 z^2-2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



