L11n454: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
m (Reverted edit of 200.83.4.3, changed back to last version by DrorsRobot) |
||
Line 26: | Line 26: | ||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
|||
<tr align=center><td>-4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>0</td></tr> |
|||
<tr align=center><td>-6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow> </td><td> </td><td>5</td></tr> |
|||
<tr align=center><td>-8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-10</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-12</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-14</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-16</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-18</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-20</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-22</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 454]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, NonAlternating, 454]]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[11, NonAlternating, 454]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 16, 3, 15], |
|||
X[16, 7, 17, 8], X[19, 22, 20, 15], X[21, 14, 22, 11], |
|||
X[13, 20, 14, 21], X[9, 18, 10, 19], X[11, 10, 12, 5], |
|||
X[17, 1, 18, 4]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[11, NonAlternating, 454]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -4, -3, 11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, |
|||
{4, -5, -11, 9, -6, 8, -7, 6}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 454]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, -3, -3, 4, -3, -2, -1, 3, -2, -3, 2, -3, -4, -3, -3, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 454]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n454_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 454]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 454]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2) 3 4 7 7 9 6 7 2 |
|||
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
|||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
|||
q q q q q q q q |
|||
2 |
|||
---- |
|||
3/2 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 454]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -32 -30 -28 2 7 6 9 10 10 12 8 |
|||
-q + q + q + --- + --- + --- + --- + --- + --- + --- + --- + |
|||
26 24 22 20 18 16 14 12 |
|||
q q q q q q q q |
|||
8 5 -6 2 |
|||
--- + -- + q + -- |
|||
10 8 4 |
|||
q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 454]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 3 5 7 9 |
|||
a 3 a 3 a a 4 a 9 a 6 a a 3 5 |
|||
-(--) + ---- - ---- + -- - ---- + ---- - ---- + -- - 5 a z + 7 a z - |
|||
3 3 3 3 z z z z |
|||
z z z z |
|||
7 9 3 3 5 3 7 3 9 3 5 5 7 5 |
|||
a z - a z - 2 a z + 3 a z + 2 a z - a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 454]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 4 6 8 |
|||
4 6 8 a 3 a 3 a a 3 a 6 a 3 a |
|||
10 a + 19 a + 10 a + -- + ---- + ---- + -- - ---- - ---- - ---- - |
|||
3 3 3 3 2 2 2 |
|||
z z z z z z z |
|||
3 5 7 9 |
|||
5 a 12 a 12 a 5 a 3 5 7 9 |
|||
---- - ----- - ----- - ---- + 7 a z + 19 a z + 25 a z + 16 a z + |
|||
z z z z |
|||
11 4 2 6 2 8 2 10 2 12 2 3 3 |
|||
3 a z - 8 a z - 15 a z - 7 a z - a z - a z - 3 a z - |
|||
5 3 7 3 9 3 11 3 4 4 6 4 |
|||
16 a z - 31 a z - 28 a z - 10 a z + 2 a z - a z - |
|||
8 4 10 4 12 4 5 5 7 5 9 5 |
|||
10 a z - 4 a z + 3 a z + 6 a z + 16 a z + 21 a z + |
|||
11 5 4 6 6 6 8 6 10 6 12 6 |
|||
11 a z - a z + 4 a z + 15 a z + 9 a z - a z - |
|||
5 7 7 7 9 7 11 7 6 8 8 8 |
|||
2 a z - 2 a z - 3 a z - 3 a z - 2 a z - 5 a z - |
|||
10 8 7 9 9 9 |
|||
3 a z - a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 454]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 2 1 2 1 2 2 5 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
|||
q q q t q t q t q t q t q t |
|||
4 4 3 5 6 3 3 4 |
|||
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + |
|||
14 6 14 5 12 5 12 4 10 4 10 3 8 3 8 2 |
|||
q t q t q t q t q t q t q t q t |
|||
5 2 |
|||
----- + ---- |
|||
6 2 4 |
|||
q t q t</nowiki></pre></td></tr> |
|||
</table> }} |
Latest revision as of 12:26, 5 July 2007
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n454's Link Presentations]
Planar diagram presentation | X6172 X5,12,6,13 X3849 X2,16,3,15 X16,7,17,8 X19,22,20,15 X21,14,22,11 X13,20,14,21 X9,18,10,19 X11,10,12,5 X17,1,18,4 |
Gauss code | {1, -4, -3, 11}, {-10, 2, -8, 7}, {-2, -1, 5, 3, -9, 10}, {4, -5, -11, 9, -6, 8, -7, 6} |
A Braid Representative | ||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|