L11a7: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 7 | |
k = 7 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,8,-10,9,-4,6,-7,11,-2,3,-8,10,-9,7,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,8,-10,9,-4,6,-7,11,-2,3,-8,10,-9,7,-6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 7]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 7]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 02:57, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a7's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X8493 X22,14,5,13 X14,22,15,21 X18,10,19,9 X20,12,21,11 X10,20,11,19 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {4, -1, 2, -5, 8, -10, 9, -4, 6, -7, 11, -2, 3, -8, 10, -9, 7, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) \left(2 v^4-3 v^3+3 v^2-3 v+2\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 16 q^{9/2}-17 q^{7/2}+14 q^{5/2}-12 q^{3/2}+\frac{1}{q^{3/2}}-q^{19/2}+3 q^{17/2}-5 q^{15/2}+10 q^{13/2}-14 q^{11/2}+7 \sqrt{q}-\frac{4}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-7} -3 z^3 a^{-7} -z a^{-7} + a^{-7} z^{-1} +z^7 a^{-5} +4 z^5 a^{-5} +5 z^3 a^{-5} +z a^{-5} -2 a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} +z^3 a^{-3} -z a^{-3} -z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-11} -2 z^3 a^{-11} +3 z^6 a^{-10} -7 z^4 a^{-10} +4 z^2 a^{-10} +4 z^7 a^{-9} -7 z^5 a^{-9} +3 z^3 a^{-9} +4 z^8 a^{-8} -4 z^6 a^{-8} -3 z^4 a^{-8} +7 z^2 a^{-8} -2 a^{-8} +4 z^9 a^{-7} -8 z^7 a^{-7} +13 z^5 a^{-7} -9 z^3 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} +2 z^{10} a^{-6} -2 z^6 a^{-6} +z^4 a^{-6} +6 z^2 a^{-6} -5 a^{-6} +9 z^9 a^{-5} -27 z^7 a^{-5} +38 z^5 a^{-5} -24 z^3 a^{-5} +3 z a^{-5} +2 a^{-5} z^{-1} +2 z^{10} a^{-4} +2 z^8 a^{-4} -12 z^6 a^{-4} +8 z^4 a^{-4} +2 z^2 a^{-4} -3 a^{-4} +5 z^9 a^{-3} -11 z^7 a^{-3} +6 z^5 a^{-3} -4 z^3 a^{-3} +2 z a^{-3} +6 z^8 a^{-2} -16 z^6 a^{-2} +9 z^4 a^{-2} -z^2 a^{-2} + a^{-2} +4 z^7 a^{-1} -11 z^5 a^{-1} +6 z^3 a^{-1} +z a^{-1} - a^{-1} z^{-1} +z^6-2 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



