L11n313: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 313 | |
k = 313 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,-4,9,-3,8:11,-2,-5,6,-7,4,-8,5,-6,3,-9,7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,-4,9,-3,8:11,-2,-5,6,-7,4,-8,5,-6,3,-9,7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
| Line 51: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 313]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 313]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 03:00, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n313's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X9,20,10,21 X7,16,8,17 X13,18,14,19 X19,14,20,15 X15,22,16,11 X17,10,18,5 X21,8,22,9 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -4, 9, -3, 8}, {11, -2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2) t(3)^4+t(1) t(2)^2 t(3)^3+t(2)^2 t(3)^3-t(1) t(3)^3-t(1) t(2) t(3)^3-t(2) t(3)^3-2 t(2)^2 t(3)^2+2 t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2+t(2)^2 t(3)-t(1) t(3)+t(1) t(2) t(3)+t(2) t(3)-t(3)-t(2)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-3} - q^{-4} + q^{-5} + q^{-6} +3 q^{-8} -2 q^{-9} +3 q^{-10} -3 q^{-11} +2 q^{-12} - q^{-13} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{14} z^{-2} +4 a^{12} z^{-2} +5 a^{12}-a^{10} z^4-9 a^{10} z^2-5 a^{10} z^{-2} -13 a^{10}+a^8 z^6+6 a^8 z^4+9 a^8 z^2+2 a^8 z^{-2} +7 a^8+a^6 z^6+5 a^6 z^4+5 a^6 z^2+a^6 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{15}-5 z^5 a^{15}+7 z^3 a^{15}-4 z a^{15}+a^{15} z^{-1} +2 z^8 a^{14}-10 z^6 a^{14}+13 z^4 a^{14}-7 z^2 a^{14}-a^{14} z^{-2} +3 a^{14}+z^9 a^{13}-2 z^7 a^{13}-11 z^5 a^{13}+26 z^3 a^{13}-19 z a^{13}+5 a^{13} z^{-1} +4 z^8 a^{12}-23 z^6 a^{12}+38 z^4 a^{12}-29 z^2 a^{12}-4 a^{12} z^{-2} +15 a^{12}+z^9 a^{11}-2 z^7 a^{11}-16 z^5 a^{11}+42 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +3 z^8 a^{10}-21 z^6 a^{10}+44 z^4 a^{10}-42 z^2 a^{10}-5 a^{10} z^{-2} +20 a^{10}+2 z^7 a^9-15 z^5 a^9+27 z^3 a^9-18 z a^9+5 a^9 z^{-1} +z^8 a^8-7 z^6 a^8+14 z^4 a^8-15 z^2 a^8-2 a^8 z^{-2} +8 a^8+z^7 a^7-5 z^5 a^7+4 z^3 a^7+z^6 a^6-5 z^4 a^6+5 z^2 a^6-a^6 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



