Naming and Enumeration: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 30: Line 30:
<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--$$Alexander[Knot[6, 1]][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[4]:=</tt><code> Alexander[Knot[6, 1]][t]</code>
<tt><font color=blue>In[4]:=</font></tt><code><font color=red> Alexander[Knot[6, 1]][t]</font></code>


<tt>Out[4]=</tt> <math>-2 t+5-\frac{2}{t}</math>
<tt>Out[4]=</tt> <math>-2 t+5-\frac{2}{t}</math>
Line 38: Line 38:
<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<tt>In[5]:=</tt><code> Alexander[Knot[9, 46]][t]</code>
<tt><font color=blue>In[5]:=</font></tt><code><font color=red> Alexander[Knot[9, 46]][t]</font></code>


<tt>Out[5]=</tt> <math>-2 t+5-\frac{2}{t}</math>
<tt>Out[5]=</tt> <math>-2 t+5-\frac{2}{t}</math>

Revision as of 15:04, 23 August 2005

KnotTheory` comes loaded with some knot tables; currently, the Rolfsen table of prime knots with up to 10 crossings [Rolfsen], the Hoste-Thistlethwaite tables of prime knots with up to 16 crossings and the Thistlethwaite table of prime links with up to 11 crossings (see Further Knot Theory Software#Knotscape):

(For In[1] see Setup)

In[2]:= ?Knot

Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.

In[3]:= ?Link

Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.

Thus, for example, let us verify that the knots 6_1 and 9_46 have the same Alexander polynomial:

In[4]:= Alexander[Knot[6, 1]][t]

Out[4]=


In[5]:= Alexander[Knot[9, 46]][t]

Out[5]=

References

[Rolfsen] ^  D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.