The Jones Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 3: Line 3:
<!--$$ Jones[Knot[6, 3]][q] $$-->
<!--$$ Jones[Knot[6, 3]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=2}}
<tt>In[1]:=</tt> <code> Jones[Knot[6, 3]][q] </code>
Jones[Knot[6, 3]][q]

{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki> -3 2 2 2 3
<tt>Out[1]=</tt> <math>-q^3+2 q^2-2 q+3-\frac{2}{q}+\frac{2}{q^2}-\frac{1}{q^3}</math>
3 - q + -- - - - 2 q + 2 q - q
2 q
q</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$ Jones[Knot[9, 48]][q] $$-->
<!--$$ Jones[Knot[9, 48]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=3}}
<tt>In[2]:=</tt> <code> Jones[Knot[9, 48]][q] </code>
Jones[Knot[9, 48]][q]

{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6
<tt>Out[2]=</tt> <math>-2 q^6+3 q^5-4 q^4+6 q^3-4 q^2+4 q-3+\frac{1}{q}</math>
-3 + - + 4 q - 4 q + 6 q - 4 q + 3 q - 2 q
q</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$ Jones[Knot[10, 112]][q] $$-->
<!--$$ Jones[Knot[10, 112]][q] $$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=4}}
<tt>In[3]:=</tt> <code> Jones[Knot[10, 112]][q] </code>
Jones[Knot[10, 112]][q]

{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -7 4 7 11 14 14 14 2 3
<tt>Out[3]=</tt> <math>q^3-4 q^2+7 q-10+\frac{14}{q}-\frac{14}{q^2}+\frac{14}{q^3}-\frac{11}{q^4}+\frac{7}{q^5}-\frac{4}{q^6}+\frac{1}{q^7}</math>
-10 + q - -- + -- - -- + -- - -- + -- + 7 q - 4 q + q
6 5 4 3 2 q
q q q q q</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->

Revision as of 22:30, 25 August 2005

The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:

In[2]:=
Jones[Knot[6, 3]][q] 
Out[2]=
     -3   2    2            2    3
3 - q   + -- - - - 2 q + 2 q  - q
           2   q
          q
In[3]:=
Jones[Knot[9, 48]][q] 
Out[3]=
     1            2      3      4      5      6
-3 + - + 4 q - 4 q  + 6 q  - 4 q  + 3 q  - 2 q
     q
In[4]:=
Jones[Knot[10, 112]][q] 
Out[4]=
       -7   4    7    11   14   14   14            2    3
-10 + q   - -- + -- - -- + -- - -- + -- + 7 q - 4 q  + q
             6    5    4    3    2   q
            q    q    q    q    q