Article:Math.AG/0001043/unidentified-references: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
<pre>
<pre>

J.~Bernstein and V.~Lunts, \emph{Equivariant sheaves and functors}, Lecture Notes in Mathematics, vol. 1578, Springer, 1994.

A.~Bondal and M.~Kapranov, \emph{Representable functors, {S}erre functors, and mutations}, Math. USSR Izv. \textbf{35} (1990), 519--541.

A.~Bondal and M.~Kapranov, \emph{Enhanced triangulated categories}, Math. USSR Sbornik \textbf{70} (1991), 93--107.


\bysame, \emph{Semiorthogonal decomposition for algebraic varieties}, Preprint alg-geom/\linebreak[0]9506012.

A.~Bondal and A.~Polishchuk, \emph{Homological properties of associative algebras: the method of helices}, Izv. Ross. Akad. Nauk Ser. Mat.\textbf{57} (1993), 3--50; translation in Russian Acad. Sci. Izv. Math. \textbf{42} (1994), 219--260.


T.~Bridgeland, A.~King, and M.~Reid, \emph{Mukai implies {M}c\-{K}ay}, Preprint math.AG/ 9908027.

C.~H. Clemens, \emph{Double solids}, Adv. in Math. \textbf{47} (1983), 107--230.


P.~Deligne, \emph{Action du groupe de tresses sur une categorie}, Invent. Math. \textbf{128} (1997), 159--175.


A.~Fathi, F.~Laudenbach, and V.~Po{\'e}naru, \emph{Travaux de {T}hurston sur les surfaces}, Ast{\'e}risque, vol. 66--67, Soc. Math. France, 1979.

S.~Gelfand and Yu. Manin, \emph{Methods of homological algebra}, Springer, 1996.

M.~Gerstenhaber and S.~Schack, \emph{Algebraic cohomology and deformation theory}, Deformation theory of algebras and structures and applications, NATO Adv. Study Inst. C, vol. 247, 1988, pp.~11--264.

M.~Gross, \emph{Blabber about black holes}, Unpublished notes.

V.~K. A.~M. Gugenheim, L.~A. Lambe, and J.~D. Stasheff, \emph{Algebraic aspects of {C}hen's twisting cochain}, Illinois J. Math. \textbf{34} (1990), 485--502.

S.~Halperin and J.~Stasheff, \emph{Obstructions to homotopy equivalences}, Advances in Math. \textbf{32} (1979), 233--279.

R.~Hartshorne, \emph{Residues and duality}, Lecture Notes in Math., vol.~20, Springer, 1966.

\bysame, \emph{Algebraic geometry}, Springer, 1977.


T.~V. Kadeishvili, \emph{The structure of the {$A_\infty$}-algebra, and the {H}ochschild and {H}arrison cohomologies}, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR \textbf{91} (1988), 19--27 (Russian).


B.~Keller, \emph{A remark on tilting theory and {$DG$} algebras}, Manuscripta Math. \textbf{79} (1993), 247--252.

B.~Keller, \emph{On the cyclic homology of exact categories}, J. Pure Appl. Algebra \textbf{136} (1999), 1--56.




M.~Kontsevich, \emph{Homological algebra of mirror symmetry}, Proceedings of the International Congress of Mathematicians (Z{\"u}rich, 1994), Birkh{\"a}user, 1995, pp.~120--139.

S.~Kuleshov, \emph{Exceptional bundles on $K3$ surfaces}, In \cite{rudakov90}.

A.~Maciocia, \emph{Generalized {F}ourier-{M}ukai transforms}, J. Reine Angew. Math. \textbf{480} (1996), 197--211.

J.~McKay, \emph{Graphs, singularities, and finite groups}, Finite groups (Santa Cruz, 1979), Proc. Symp. Pure Math., vol.~37, Amer. Math. Soc., 1980, pp.~183--186.

J.~Moore, \emph{Alg{\`e}bre homologique et homologie des espaces classifiants}, S{\'e}minaire Cartan, 1959-1960, Expos{\'e} 7.

\bysame, \emph{Differential homological algebra}, Proceedings of the International Congress of Mathematicians, Nice, vol.~1, 1970, pp.~335--339.

D.~Morrison, \emph{Through the looking glass}, Mirror Symmetry III (Montreal 1995), AMS/IP Stud. Adv. Math., vol.~10, 1999, pp.~263--277.

S.~Mukai, \emph{Duality between {$D(X)$} and {$D(\hat{X})$} with its application to {P}icard sheaves}, Nagoya J. Math. \textbf{81} (1981), 153--175.

\bysame, \emph{On the moduli space of bundles on {$K3$} surfaces {I}}, Vector bundles on Algebraic Varieties (M.~F. Atiyah et~al., eds.), Oxford Univ. Press, 1987, pp.~341--413.

I.~Nakamura, \emph{Hilbert schemes of {A}belian group orbits}, to appear in J. Algebraic Geom.


\bysame, \emph{Equivalences of derived categories and {$K3$} surfaces}, J. Math. Sci. \textbf{84} (1997), 1361--1381.

H.~Pinkham, \emph{Singularit{\'e}s exceptionnelles, la dualit{\'e} {\'e}trange d'{A}rnold, et les surfaces {$K3$}}, C.R. Acad. Sci. Paris \textbf{284A} (1977), 615--618.

A.~Polishchuk, \emph{Symplectic biextensions and a generalization of the Fourier-Mukai transform}, Math. Res. Letters \textbf{3} (1996), 813--828.

\bysame, \emph{Massey and {F}ukaya products on elliptic curves}, Preprint AG/9803017 (revised version, July 1999).

A.~Polishchuk and E.~Zaslow, \emph{Categorical mirror symmetry: the elliptic curve}, Adv. Theor. Math. Physics \textbf{2} (1998), 443--470.

J.~Rickard, \emph{Morita theory for derived categories}, J. London Math. Soc. \textbf{39} (1989), 436--456.

A.~Rudakov et~al., \emph{Helices and vector bundles: {S}eminaire {R}udakov}, LMS Lecture Note Series, vol. 148, Cambridge University Press, 1990.

P.~Seidel, \emph{An exact sequence for symplectic {F}loer homology}, in preparation.

\bysame, \emph{Graded {L}agrangian submanifolds}, To appear in {\em Bull.\ Soc.\ Math.\ France}.

\bysame, \emph{Lagrangian two-spheres can be symplectically knotted}, J. Differential Geom. \textbf{52} (1999), 145--171.

A.~Strominger, S.~T. Yau, and E.~Zaslow, \emph{Mirror symmetry is {$T$}-duality}, Nucl. Phys. B \textbf{479} (1996), 243--259.

D.~Tanr{\'e}, \emph{Cohomologie de {H}arrison et type d'homotopie rationelle}, Algebra, algebraic topology and their interaction (J.~Roos, ed.), Lecture Notes in Mathematics, vol. 1183, Springer, 1986, pp.~361--370.

R.~P. Thomas, \emph{Mirror symmetry and actions of braid groups on derived categories}, Proceedings of the {H}arvard {W}inter {S}chool on {M}irror {S}ymmetry, International Press, 1999.

</pre>
</pre>

Latest revision as of 04:12, 17 September 2006

  

 J.~Bernstein and V.~Lunts, \emph{Equivariant sheaves and functors}, Lecture   Notes in Mathematics, vol. 1578, Springer, 1994.  

 A.~Bondal and M.~Kapranov, \emph{Representable functors, {S}erre functors, and   mutations}, Math. USSR Izv. \textbf{35} (1990), 519--541.  

 A.~Bondal and M.~Kapranov, \emph{Enhanced triangulated categories},   Math. USSR Sbornik \textbf{70} (1991), 93--107.  


 \bysame, \emph{Semiorthogonal decomposition for algebraic varieties}, Preprint   alg-geom/\linebreak[0]9506012.  

 A.~Bondal and A.~Polishchuk, \emph{Homological properties of   associative algebras: the method of helices}, Izv. Ross. Akad. Nauk Ser. Mat.\textbf{57} (1993), 3--50; translation in Russian Acad. Sci. Izv. Math. \textbf{42} (1994), 219--260.  


 T.~Bridgeland, A.~King, and M.~Reid, \emph{Mukai implies {M}c\-{K}ay}, Preprint   math.AG/ 9908027.  

 C.~H. Clemens, \emph{Double solids}, Adv. in Math. \textbf{47} (1983),   107--230.  


 P.~Deligne, \emph{Action du groupe de tresses sur une categorie}, Invent. Math.   \textbf{128} (1997), 159--175.  


 A.~Fathi, F.~Laudenbach, and V.~Po{\'e}naru, \emph{Travaux de {T}hurston sur   les surfaces}, Ast{\'e}risque, vol. 66--67, Soc. Math. France, 1979.  

 S.~Gelfand and Yu. Manin, \emph{Methods of homological algebra}, Springer,   1996.  

 M.~Gerstenhaber and S.~Schack, \emph{Algebraic cohomology and deformation   theory}, Deformation theory of algebras and structures and applications, NATO   Adv. Study Inst. C, vol. 247, 1988, pp.~11--264.  

 M.~Gross, \emph{Blabber about black holes}, Unpublished notes.  

 V.~K. A.~M. Gugenheim, L.~A. Lambe, and J.~D. Stasheff, \emph{Algebraic aspects   of {C}hen's twisting cochain}, Illinois J. Math. \textbf{34} (1990),   485--502.  

 S.~Halperin and J.~Stasheff, \emph{Obstructions to homotopy equivalences},   Advances in Math. \textbf{32} (1979), 233--279.  

 R.~Hartshorne, \emph{Residues and duality}, Lecture Notes in Math., vol.~20,   Springer, 1966.  

 \bysame, \emph{Algebraic geometry}, Springer, 1977.  


 T.~V. Kadeishvili, \emph{The structure of the {$A_\infty$}-algebra, and the   {H}ochschild and {H}arrison cohomologies}, Trudy Tbiliss. Mat. Inst. Razmadze   Akad. Nauk Gruzin. SSR \textbf{91} (1988), 19--27 (Russian).  


 B.~Keller, \emph{A remark on tilting theory and {$DG$} algebras}, Manuscripta   Math. \textbf{79} (1993), 247--252.  

 B.~Keller, \emph{On the cyclic homology of exact categories}, J. Pure Appl. Algebra \textbf{136} (1999), 1--56.  




 M.~Kontsevich, \emph{Homological algebra of mirror symmetry}, Proceedings of   the International Congress of Mathematicians (Z{\"u}rich, 1994),   Birkh{\"a}user, 1995, pp.~120--139.  

 S.~Kuleshov, \emph{Exceptional bundles on $K3$ surfaces}, In \cite{rudakov90}.  

 A.~Maciocia, \emph{Generalized {F}ourier-{M}ukai transforms}, J. Reine Angew.   Math. \textbf{480} (1996), 197--211.  

 J.~McKay, \emph{Graphs, singularities, and finite groups}, Finite groups (Santa   Cruz, 1979), Proc. Symp. Pure Math., vol.~37, Amer. Math. Soc., 1980,   pp.~183--186.  

 J.~Moore, \emph{Alg{\`e}bre homologique et homologie des espaces classifiants},   S{\'e}minaire Cartan, 1959-1960, Expos{\'e} 7.  

 \bysame, \emph{Differential homological algebra}, Proceedings of the   International Congress of Mathematicians, Nice, vol.~1, 1970, pp.~335--339.  

 D.~Morrison, \emph{Through the looking glass}, Mirror Symmetry III (Montreal   1995), AMS/IP Stud. Adv. Math., vol.~10, 1999, pp.~263--277.  

 S.~Mukai, \emph{Duality between {$D(X)$} and {$D(\hat{X})$} with its   application to {P}icard sheaves}, Nagoya J. Math. \textbf{81} (1981),   153--175.  

 \bysame, \emph{On the moduli space of bundles on {$K3$} surfaces {I}}, Vector   bundles on Algebraic Varieties (M.~F. Atiyah et~al., eds.), Oxford Univ.   Press, 1987, pp.~341--413.  

 I.~Nakamura, \emph{Hilbert schemes of {A}belian group orbits}, to appear in J.   Algebraic Geom.  


 \bysame, \emph{Equivalences of derived categories and {$K3$} surfaces}, J.   Math. Sci. \textbf{84} (1997), 1361--1381.  

 H.~Pinkham, \emph{Singularit{\'e}s exceptionnelles, la dualit{\'e} {\'e}trange   d'{A}rnold, et les surfaces {$K3$}}, C.R. Acad. Sci. Paris \textbf{284A}   (1977), 615--618.  

 A.~Polishchuk, \emph{Symplectic biextensions and a generalization of   the Fourier-Mukai transform}, Math. Res. Letters \textbf{3} (1996), 813--828.  

 \bysame, \emph{Massey and {F}ukaya products on elliptic curves}, Preprint   AG/9803017 (revised version, July 1999).  

 A.~Polishchuk and E.~Zaslow, \emph{Categorical mirror symmetry: the elliptic   curve}, Adv. Theor. Math. Physics \textbf{2} (1998), 443--470.  

 J.~Rickard, \emph{Morita theory for derived categories}, J. London Math. Soc.   \textbf{39} (1989), 436--456.  

 A.~Rudakov et~al., \emph{Helices and vector bundles: {S}eminaire {R}udakov},   LMS Lecture Note Series, vol. 148, Cambridge University Press, 1990.  

 P.~Seidel, \emph{An exact sequence for symplectic {F}loer homology}, in   preparation.  

 \bysame, \emph{Graded {L}agrangian submanifolds}, To appear in {\em Bull.\   Soc.\ Math.\ France}.  

 \bysame, \emph{Lagrangian two-spheres can be symplectically knotted}, J. Differential Geom. \textbf{52} (1999), 145--171.  

 A.~Strominger, S.~T. Yau, and E.~Zaslow, \emph{Mirror symmetry is   {$T$}-duality}, Nucl. Phys. B \textbf{479} (1996), 243--259.  

 D.~Tanr{\'e}, \emph{Cohomologie de {H}arrison et type d'homotopie rationelle},   Algebra, algebraic topology and their interaction (J.~Roos, ed.), Lecture   Notes in Mathematics, vol. 1183, Springer, 1986, pp.~361--370.  

 R.~P. Thomas, \emph{Mirror symmetry and actions of braid groups on derived   categories}, Proceedings of the {H}arvard {W}inter {S}chool on {M}irror   {S}ymmetry, International Press, 1999.