DT (Dowker-Thistlethwaite) Codes: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(iamlonleymsn.com)
(iamlonleymsn.com)
Line 1: Line 1:
<div style='display:none;width=1px;'><a href=' http://infoarena.info/ '> infoarena </a> <br />
{{Manual TOC Sidebar}}
<a href=' http://homunkulus.info/ '> homunkulus </a> <br />

<div style='display:none;width=1px;'><a href=' http://homunkulus.info/ '> homunkulus </a> <br />
<a href=' http://chrykne.info/ '> chrykne </a> <br />
<a href=' http://afxbmx.info/ '> afx bmx </a> <br />
<a href=' http://bambulka.info/ ' > bambulka </a> <br />
<a href=' http://bambulka.info/ ' > bambulka </a> <br />
<a href=' http://infoarena.info/ '> infoarena </a> <br />
<a href=' http://afxbmx.info/ '> afx bmx </a> <br />
<a href=' http://chrykne.info/ '> chrykne </a> <br />


</div>
</div>

====Links====

[[Image:DTCode4L7n2.gif|frame|center|A DT notation example, for the link [[L7n2]]]]

DT Codes for links are defined in a similar way (see {{ref|DollHoste}}). Follow the same numbering process as for knots, except when you finish traversing one component, jump straight to the next. It is not difficult to see that there is always a choice of starting points along the components for which the resulting pairing is a pairing between odd and even numbers. (On the figure above one possible choice is indicated). Again, it is enough to only list the even numbers corresponding to <math>1, 3, 5, \ldots</math>; call the resulting list <math>\lambda</math>. (Above, <math>\lambda=(6,-8,-10,12,-14,2,-4)</math>). Notice that the odd indices are naturally subdivided into sublists according to the component of the link on which they lie, and this induces a subdivision of <math>\lambda</math> into sublists. Thus with the choices made in the figure above, the DT code for the link [[L7n2]] is <math>(6,-8\mid -10,12,-14,2,-4)</math>.

<tt>KnotTheory`</tt> knows about DT codes for links:

<!--$$DTCode[Link[7, NonAlternating, 2]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 7 |
in = <nowiki>DTCode[Link[7, NonAlternating, 2]]</nowiki> |
out= <nowiki>DTCode[{6, -8}, {-10, 12, -14, 2, -4}]</nowiki>}}
<!--END-->

<!--$$MultivariableAlexander[DTCode[{6, -8}, {-10, 12, -14, 2, -4}]][t]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>MultivariableAlexander[DTCode[{6, -8}, {-10, 12, -14, 2, -4}]][t]</nowiki> |
out= <nowiki>-1 + t[1] + t[2] - t[1] t[2]</nowiki>}}
<!--END-->

{{note|DollHoste}} H. Doll and J. Hoste, ''A tabulation of oriented links'', Mathematics of Computation '''57-196''' (1991) 747-761.

Revision as of 01:59, 21 July 2007

<a href=' http://infoarena.info/ '> infoarena </a>

<a href=' http://homunkulus.info/ '> homunkulus </a>
<a href=' http://chrykne.info/ '> chrykne </a>
<a href=' http://afxbmx.info/ '> afx bmx </a>
<a href=' http://bambulka.info/ ' > bambulka </a>