Data:L10a166/Multivariable Alexander: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
Line 1: Line 1:
<math>\frac{-u v w^2 x-u v w x^2+2 u v w x-u v w-u v x+u v-u w^2 x^2+u w^2 x+2 u w x^2-3 u w x+u w+2 u x-u-v w^2 x^2+2 v w^2 x+v w x^2-3 v w x+2 v w+v x-v+w^2 x^2-w^2 x-w x^2+2 w x-w-x}{\sqrt{u} \sqrt{v} w x}</math>
<math>\frac{-t(1) t(4)^2 t(3)^2-t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2+t(1) t(4) t(3)^2-t(1) t(2) t(4) t(3)^2+2 t(2) t(4) t(3)^2-t(4) t(3)^2+2 t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)+t(2) t(4)^2 t(3)-t(4)^2 t(3)+t(1) t(3)-t(1) t(2) t(3)+2 t(2) t(3)-3 t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-3 t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1)+t(1) t(2)-t(2)+2 t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)-t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)}</math>

Latest revision as of 16:47, 20 February 2013

[math]\displaystyle{ \frac{-t(1) t(4)^2 t(3)^2-t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2+t(1) t(4) t(3)^2-t(1) t(2) t(4) t(3)^2+2 t(2) t(4) t(3)^2-t(4) t(3)^2+2 t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)+t(2) t(4)^2 t(3)-t(4)^2 t(3)+t(1) t(3)-t(1) t(2) t(3)+2 t(2) t(3)-3 t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-3 t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1)+t(1) t(2)-t(2)+2 t(1) t(4)-t(1) t(2) t(4)+t(2) t(4)-t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math]