T(13,2): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- Script generated - do not edit! -->


<!-- $Failedmath . uwo . c$Failedv$ildge] at [h$Failedn.matuwo . ca
<!-- ailed $Failedn$F $Failedmath . u . c$Failedv$ileddge] at [h$Failedn.matuwo . ca
--------
--------
c$Faidml K$FaidaFaedsKt$iledpaaidtoront$edailedtres$Failedgrams$Faileding-left: 1em;" | X<sub>3146<u b 152/s$Failed62</sub>
caidml K$FaidailedsKt$idpa$Faidront$iledailedtres$Failedgrams | dir en Planartio$Failede="padding-left: 1em;" | X<sub>3146<u b 152/s$Failed62</sub>
|-
|-
|'''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1}
|'''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1}
'$Failed (Dowk-Thistlewaite) Codes|DowrhtFaileda$FaediaInvariants|name=T(3,2)}}
'$Failed (Dowk-ThistlaeCes|Dowr - Thistlailedepa$Faedial Invariants|name=T(3,2)}}


===[[Finite Type (Vassiliev)nvaanFailed===$Failed'''
===[[Finite Type (Vassiliev)nvaanFailed===$Failed'''
Line 12: Line 12:
|}
|}


[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternation < math</math>). e sques with <f$FailedYe2</math>, where <math>s=</math>2 is the signHLRed$Failedrder=1>
[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternationmathmath>). The squares with <f$FailedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><table border=1>
<tr align=center>
<tr align=center>
<td wid$Failedled$Failed>j</td><td>&nbsp;</td$Failed/tr>
<td wid$Failedled$Failed>j</td><td>&nbsp;</td$Failed/tr>
</tab$Failed/$Failedlednter><td>9</td><td>&nbsp;</td><td>&nbsp$Failedtd bgcyello1</$Faileded<td>&nbsp;</td><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Failed>$Fa$Failed style="color: red; borpadding:0">&lt;&lt; KnotTheory$Failed
</table></td>
</tr>$$Failed9$Failedd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp $Failedd$Faile$Failed
<td wi$F$Failedtd>9</td><td>&nbsp;</td><td>&nbsp$Failedtd bgcolor=yellow>1</$Fleded < tdnbsp;</td><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Failed>$Fa$Failed style="color: red; borpadding:0">&lt;&lt; KnotTheory$Failed
</tr>$Failed="border: 0$Failed$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp $Failedd$Faile$Failed
ailed > -----$Failed------
ailed > -----$Failed------
tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$Failedd,$Faileds$Failedi$Failed<$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td></$Failedolor: bl$$Failed/$Failedrd$Failedo$Faed > $Failea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failed: $Failed&nbsp;&nbsp;</now$Failed=borde $Failed - t
tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$Failedd,$Faileds$Failedi$Failed<$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$Faido$Failed>$Failedea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failed: $Failed&nbsp;&nbsp;</now$Faile t
-(-------) < $Failedo$Failed < $Fai
-1 - ------- + borde $Failed < $Fa
$Failedde$Failed $Failedd$Failed>$Failede$Failed $Failede$Failed 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><t$Failedadding: 0em"><now$Failed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failednowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: $Failedi>{3, 2}</nowiki>$Failedo$Failedrpaddin $Failed/$Failed:$Failede$Failedt$Failedd$Failed>$Failedd$Failedt$Failedcpadding0$Failed"8ding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failed 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><t$Failedadding: 0em"><now$Failed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failednowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><p$Failedding: 0em"><nowik$Failed/$Failed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Failedr$Failedd$Failed border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
Include[ColouredJonesM.mhtml]
Include[ColouredJonesM.mhtml]

Revision as of 18:33, 26 August 2005