L11a36: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 36]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 36]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 50: | Line 59: | ||
-4, 5, -3, 9, -6, 8, -7}]</nowiki></pre></td></tr> |
-4, 5, -3, 9, -6, 8, -7}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 36]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a36_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 36]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 36]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(27/2) 3 7 10 13 15 14 13 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 36]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 36]], KnotSignature[Link[11, Alternating, 36]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -5}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 36]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(27/2) 3 7 10 13 15 14 13 |
|||
q - ----- + ----- - ----- + ----- - ----- + ----- - ----- + |
q - ----- + ----- - ----- + ----- - ----- + ----- - ----- + |
||
25/2 23/2 21/2 19/2 17/2 15/2 13/2 |
25/2 23/2 21/2 19/2 17/2 15/2 13/2 |
||
| Line 71: | Line 72: | ||
11/2 9/2 7/2 |
11/2 9/2 7/2 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 36]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -42 -40 -38 3 -34 3 3 -26 4 4 4 |
||
-q - q + q - --- - q - --- + --- + q + --- + --- + --- - |
-q - q + q - --- - q - --- + --- + q + --- + --- + --- - |
||
36 30 28 24 22 18 |
36 30 28 24 22 18 |
||
| Line 81: | Line 82: | ||
12 |
12 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 36]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 13 |
||
-2 a 2 a a a 5 7 11 13 |
-2 a 2 a a a 5 7 11 13 |
||
----- + ---- + --- - --- - 2 a z - 4 a z + 5 a z - a z - |
----- + ---- + --- - --- - 2 a z - 4 a z + 5 a z - a z - |
||
| Line 89: | Line 90: | ||
5 3 7 3 9 3 11 3 5 5 7 5 9 5 |
5 3 7 3 9 3 11 3 5 5 7 5 9 5 |
||
3 a z - 5 a z - 4 a z + 3 a z - a z - 2 a z - 2 a z</nowiki></pre></td></tr> |
3 a z - 5 a z - 4 a z + 3 a z - a z - 2 a z - 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 36]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 11 13 |
||
8 12 16 2 a 2 a a a 5 7 |
8 12 16 2 a 2 a a a 5 7 |
||
3 a - 3 a + a - ---- - ---- + --- + --- - 2 a z + 6 a z + |
3 a - 3 a + a - ---- - ---- + --- + --- - 2 a z + 6 a z + |
||
| Line 118: | Line 119: | ||
10 10 12 10 |
10 10 12 10 |
||
a z - a z</nowiki></pre></td></tr> |
a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 36]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 1 2 1 5 2 5 |
||
{0, ---} |
|||
24</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 36]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 1 2 1 5 2 5 |
|||
q + q + ------- + ------- + ------- + ------ + ------ + ------ + |
q + q + ------- + ------- + ------- + ------ + ------ + ------ + |
||
28 11 26 10 24 10 24 9 22 9 22 8 |
28 11 26 10 24 10 24 9 22 9 22 8 |
||
Revision as of 11:54, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a36's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,15,19,16 X16,7,17,8 X8,17,9,18 X20,11,21,12 X22,13,5,14 X12,21,13,22 X14,19,15,20 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -8, 7, -9, 3, -4, 5, -3, 9, -6, 8, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{3 u v^4-6 u v^3+7 u v^2-5 u v+2 u+2 v^5-5 v^4+7 v^3-6 v^2+3 v}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{5}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{3}{q^{25/2}}+\frac{7}{q^{23/2}}-\frac{10}{q^{21/2}}+\frac{13}{q^{19/2}}-\frac{15}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{8}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}-a^{13} z^{-1} +3 z^3 a^{11}+5 z a^{11}+a^{11} z^{-1} -2 z^5 a^9-4 z^3 a^9+2 a^9 z^{-1} -2 z^5 a^7-5 z^3 a^7-4 z a^7-2 a^7 z^{-1} -z^5 a^5-3 z^3 a^5-2 z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^6-3 a^{16} z^4+3 a^{16} z^2-a^{16}+3 a^{15} z^7-8 a^{15} z^5+5 a^{15} z^3-a^{15} z+4 a^{14} z^8-8 a^{14} z^6+a^{14} z^2+3 a^{13} z^9-2 a^{13} z^7-9 a^{13} z^5+6 a^{13} z^3-a^{13} z^{-1} +a^{12} z^{10}+6 a^{12} z^8-21 a^{12} z^6+22 a^{12} z^4-12 a^{12} z^2+3 a^{12}+6 a^{11} z^9-13 a^{11} z^7+10 a^{11} z^5-a^{11} z^3+a^{11} z-a^{11} z^{-1} +a^{10} z^{10}+5 a^{10} z^8-17 a^{10} z^6+21 a^{10} z^4-5 a^{10} z^2+3 a^9 z^9-5 a^9 z^7+4 a^9 z^5+7 a^9 z^3-8 a^9 z+2 a^9 z^{-1} +3 a^8 z^8-3 a^8 z^6-2 a^8 z^4+6 a^8 z^2-3 a^8+3 a^7 z^7-6 a^7 z^5+6 a^7 z^3-6 a^7 z+2 a^7 z^{-1} +2 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-3 a^5 z^3+2 a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



