L11a24: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 35: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 24]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 24]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 50: | Line 59: | ||
-7, 8, -4, 5, -6, 7, -5}]</nowiki></pre></td></tr> |
-7, 8, -4, 5, -6, 7, -5}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 24]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a24_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 24]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 24]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2) 3 8 14 18 22 21 19 14 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, Alternating, 24]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, Alternating, 24]], KnotSignature[Link[11, Alternating, 24]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -3}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 24]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2) 3 8 14 18 22 21 19 14 |
|||
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - |
||
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 |
||
| Line 71: | Line 72: | ||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 24]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 2 -30 3 5 -20 5 2 4 3 |
||
-1 - q - --- + q - --- + --- + q + --- - --- + --- - --- + |
-1 - q - --- + q - --- + --- + q + --- - --- + --- - --- + |
||
32 26 24 18 16 14 12 |
32 26 24 18 16 14 12 |
||
| Line 81: | Line 82: | ||
8 6 4 |
8 6 4 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 24]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 11 |
||
a 2 a 3 a 3 a a 3 5 7 |
a 2 a 3 a 3 a a 3 5 7 |
||
-(--) + ---- - ---- + ---- - --- - a z - 3 a z + 7 a z - 9 a z + |
-(--) + ---- - ---- + ---- - --- - a z - 3 a z + 7 a z - 9 a z + |
||
| Line 89: | Line 90: | ||
9 3 3 3 5 3 7 3 3 5 5 5 |
9 3 3 3 5 3 7 3 3 5 5 5 |
||
4 a z - a z - a z + 7 a z - 6 a z + a z + 3 a z</nowiki></pre></td></tr> |
4 a z - a z - a z + 7 a z - 6 a z + a z + 3 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 24]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 7 9 11 |
||
6 10 12 a 2 a 3 a 3 a a 3 |
6 10 12 a 2 a 3 a 3 a a 3 |
||
-2 a + 2 a + a - -- - ---- - ---- - ---- - --- - a z + 5 a z + |
-2 a + 2 a + a - -- - ---- - ---- - ---- - --- - a z + 5 a z + |
||
| Line 118: | Line 119: | ||
5 9 7 9 9 9 6 10 8 10 |
5 9 7 9 9 9 6 10 8 10 |
||
5 a z - 9 a z - 4 a z - a z - a z</nowiki></pre></td></tr> |
5 a z - 9 a z - 4 a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 24]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 6 1 2 1 6 2 8 |
||
{0, ---} |
|||
24</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 24]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 6 1 2 1 6 2 8 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
4 2 22 9 20 8 18 8 18 7 16 7 16 6 |
||
Revision as of 12:10, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a24's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X18,11,19,12 X22,19,5,20 X20,15,21,16 X16,21,17,22 X12,17,13,18 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{3 u v^4-10 u v^3+12 u v^2-7 u v+u+v^5-7 v^4+12 v^3-10 v^2+3 v}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{14}{q^{5/2}}-\frac{19}{q^{7/2}}+\frac{21}{q^{9/2}}-\frac{22}{q^{11/2}}+\frac{18}{q^{13/2}}-\frac{14}{q^{15/2}}+\frac{8}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{11} z^{-1} +4 a^9 z+3 a^9 z^{-1} -6 a^7 z^3-9 a^7 z-3 a^7 z^{-1} +3 a^5 z^5+7 a^5 z^3+7 a^5 z+2 a^5 z^{-1} +a^3 z^5-a^3 z^3-3 a^3 z-a^3 z^{-1} -a z^3-a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+7 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -5 z^8 a^{10}+9 z^6 a^{10}-3 z^4 a^{10}-2 z^2 a^{10}+2 a^{10}-4 z^9 a^9-2 z^7 a^9+21 z^5 a^9-21 z^3 a^9+11 z a^9-3 a^9 z^{-1} -z^{10} a^8-16 z^8 a^8+42 z^6 a^8-34 z^4 a^8+12 z^2 a^8-9 z^9 a^7+2 z^7 a^7+31 z^5 a^7-36 z^3 a^7+15 z a^7-3 a^7 z^{-1} -z^{10} a^6-19 z^8 a^6+48 z^6 a^6-45 z^4 a^6+18 z^2 a^6-2 a^6-5 z^9 a^5-5 z^7 a^5+27 z^5 a^5-31 z^3 a^5+13 z a^5-2 a^5 z^{-1} -8 z^8 a^4+13 z^6 a^4-13 z^4 a^4+6 z^2 a^4-6 z^7 a^3+9 z^5 a^3-8 z^3 a^3+5 z a^3-a^3 z^{-1} -3 z^6 a^2+4 z^4 a^2-z^2 a^2-z^5 a+2 z^3 a-z a }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



