L11n303: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 34: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 303]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 303]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 51: | Line 60: | ||
{11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}]</nowiki></pre></td></tr> |
{11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 303]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n303_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 303]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 303]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 3 4 5 6 7 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, NonAlternating, 303]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 303]], KnotSignature[Link[11, NonAlternating, 303]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 303]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 3 4 5 6 7 8 |
|||
1 + q + 2 q - 2 q + 4 q - 4 q + 4 q - 3 q + 2 q - q</nowiki></pre></td></tr> |
1 + q + 2 q - 2 q + 4 q - 4 q + 4 q - 3 q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 303]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 4 2 4 6 8 10 12 14 |
||
4 + q + -- + -- + 6 q + 4 q + 4 q + 4 q + q + 2 q - q - |
4 + q + -- + -- + 6 q + 4 q + 4 q + 4 q + q + 2 q - q - |
||
4 2 |
4 2 |
||
| Line 73: | Line 74: | ||
18 20 24 |
18 20 24 |
||
q - 2 q - q</nowiki></pre></td></tr> |
q - 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 303]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
3 13 17 2 1 4 5 2 3 z 14 z |
3 13 17 2 1 4 5 2 3 z 14 z |
||
7 - -- + -- - -- + -- - ----- + ----- - ----- + 5 z - ---- + ----- - |
7 - -- + -- - -- + -- - ----- + ----- - ----- + 5 z - ---- + ----- - |
||
| Line 85: | Line 86: | ||
2 6 4 2 4 2 |
2 6 4 2 4 2 |
||
a a a a a a</nowiki></pre></td></tr> |
a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 303]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 13 22 2 1 4 5 1 5 9 |
||
11 - a + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + |
11 - a + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + |
||
4 2 2 6 2 4 2 2 2 7 5 3 |
4 2 2 6 2 4 2 2 2 7 5 3 |
||
| Line 114: | Line 115: | ||
6 4 2 7 5 3 a 6 4 2 |
6 4 2 7 5 3 a 6 4 2 |
||
a a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 303]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 303]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 1 1 1 q 3 5 7 |
3 1 1 1 q 3 5 7 |
||
3 q + 2 q + ----- + ----- + ---- + -- + q t + 2 q t + q t + |
3 q + 2 q + ----- + ----- + ---- + -- + q t + 2 q t + q t + |
||
Revision as of 12:10, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n303's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X13,21,14,20 X19,11,20,22 X15,5,16,10 X17,9,18,8 X7,17,8,16 X9,19,10,18 X21,15,22,14 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -7, 6, -8, 5}, {11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(2)^2 t(3)^4+t(1) t(2)^2 t(3)^3-t(1) t(2) t(3)^3+t(2) t(3)^3-t(1) t(2)^2 t(3)^2+2 t(1) t(2) t(3)^2-2 t(2) t(3)^2+t(3)^2-t(1) t(2) t(3)+t(2) t(3)-t(3)+t(1)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+2 q^7-3 q^6+4 q^5-4 q^4+4 q^3-2 q^2+2 q+1+ q^{-2} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^6 a^{-2} +z^6 a^{-4} -8 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +z^4-19 z^2 a^{-2} +14 z^2 a^{-4} -3 z^2 a^{-6} +5 z^2-17 a^{-2} +13 a^{-4} -3 a^{-6} +7-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-2} +z^8 a^{-4} +z^8 a^{-6} +z^8+z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +2 z^7 a^{-7} -10 z^6 a^{-2} -6 z^6 a^{-4} -2 z^6 a^{-6} +2 z^6 a^{-8} -8 z^6-9 z^5 a^{-1} -16 z^5 a^{-3} -14 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +31 z^4 a^{-2} +15 z^4 a^{-4} -z^4 a^{-6} -6 z^4 a^{-8} +21 z^4+22 z^3 a^{-1} +41 z^3 a^{-3} +26 z^3 a^{-5} +4 z^3 a^{-7} -3 z^3 a^{-9} -39 z^2 a^{-2} -16 z^2 a^{-4} +3 z^2 a^{-6} +3 z^2 a^{-8} -23 z^2-19 z a^{-1} -35 z a^{-3} -19 z a^{-5} -2 z a^{-7} +z a^{-9} +22 a^{-2} +13 a^{-4} - a^{-8} +11+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



