L11n240: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 34: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 240]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 240]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 51: | Line 60: | ||
{10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7}]</nowiki></pre></td></tr> |
{10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 240]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n240_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 240]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 240]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(5/2) -(3/2) 1 3/2 5/2 7/2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, NonAlternating, 240]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 240]], KnotSignature[Link[11, NonAlternating, 240]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 240]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(5/2) -(3/2) 1 3/2 5/2 7/2 |
|||
-q + q - ------- - Sqrt[q] + 2 q - 3 q + 3 q - |
-q + q - ------- - Sqrt[q] + 2 q - 3 q + 3 q - |
||
Sqrt[q] |
Sqrt[q] |
||
| Line 69: | Line 70: | ||
9/2 11/2 13/2 15/2 |
9/2 11/2 13/2 15/2 |
||
4 q + 3 q - 2 q + q</nowiki></pre></td></tr> |
4 q + 3 q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 240]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -6 2 -2 4 8 10 12 14 16 |
||
2 + q + q + -- + q - 2 q - q + 2 q + 2 q + 2 q + 2 q - |
2 + q + q + -- + q - 2 q - q + 2 q + 2 q + 2 q + 2 q - |
||
4 |
4 |
||
| Line 77: | Line 78: | ||
18 22 24 |
18 22 24 |
||
q - q - q</nowiki></pre></td></tr> |
q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 240]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
||
1 4 6 5 2 a z 5 z 10 z 9 z 2 z |
1 4 6 5 2 a z 5 z 10 z 9 z 2 z |
||
---- - ---- + ---- - --- + --- + -- - --- + ---- - --- + 3 a z - ---- + |
---- - ---- + ---- - --- + --- + -- - --- + ---- - --- + 3 a z - ---- + |
||
| Line 89: | Line 90: | ||
3 a 3 a |
3 a 3 a |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 240]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 3 -2 1 4 6 5 2 a 4 z 16 z |
||
1 + a + -- + -- + a - ---- - ---- - ---- - --- - --- + --- + ---- + |
1 + a + -- + -- + a - ---- - ---- - ---- - --- - --- + --- + ---- + |
||
6 4 7 5 3 a z z 7 5 |
6 4 7 5 3 a z z 7 5 |
||
| Line 118: | Line 119: | ||
7 5 3 a 6 4 2 |
7 5 3 a 6 4 2 |
||
a a a a a a</nowiki></pre></td></tr> |
a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 240]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 240]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
2 4 1 1 1 1 q 2 4 |
2 4 1 1 1 1 q 2 4 |
||
3 + 2 q + q + ----- + ----- + ----- + - + -- + 2 q t + 2 q t + |
3 + 2 q + q + ----- + ----- + ----- + - + -- + 2 q t + 2 q t + |
||
Revision as of 11:45, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n240's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X16,8,17,7 X5,1,6,10 X3746 X9,5,10,4 X13,18,14,19 X19,22,20,11 X15,21,16,20 X21,15,22,14 X2,11,3,12 X8,18,9,17 |
| Gauss code | {1, -10, -4, 5, -3, 4, 2, -11, -5, 3}, {10, -1, -6, 9, -8, -2, 11, 6, -7, 8, -9, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2-t(2)^2 t(1)+2 t(2) t(1)-t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{15/2}-2 q^{13/2}+3 q^{11/2}-4 q^{9/2}+3 q^{7/2}-3 q^{5/2}+2 q^{3/2}-\sqrt{q}-\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-7} + a^{-7} z^{-1} -2 z^3 a^{-5} -5 z a^{-5} -4 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +10 z a^{-3} +6 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-8} -4 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +2 z^7 a^{-7} -8 z^5 a^{-7} +8 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +z^8 a^{-6} -z^6 a^{-6} -8 z^4 a^{-6} +9 z^2 a^{-6} -3 a^{-6} +4 z^7 a^{-5} -18 z^5 a^{-5} +24 z^3 a^{-5} -16 z a^{-5} +4 a^{-5} z^{-1} +z^8 a^{-4} -3 z^6 a^{-4} -2 z^4 a^{-4} +7 z^2 a^{-4} -3 a^{-4} +3 z^7 a^{-3} -20 z^5 a^{-3} +39 z^3 a^{-3} -27 z a^{-3} +6 a^{-3} z^{-1} +z^8 a^{-2} -7 z^6 a^{-2} +10 z^4 a^{-2} - a^{-2} +a z^7+2 z^7 a^{-1} -6 a z^5-16 z^5 a^{-1} +10 a z^3+33 z^3 a^{-1} -7 a z-22 z a^{-1} +2 a z^{-1} +5 a^{-1} z^{-1} +z^8-6 z^6+8 z^4-2 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



