L10a172: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 172 | |
k = 172 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:7,-8,6,-3:9,-1,4,-7,8,-5:5,-2,10,-4,3,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10:7,-8,6,-3:9,-1,4,-7,8,-5:5,-2,10,-4,3,-6/goTop.html | |
||
| Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 172]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 172]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[20, 15, 17, 16], X[14, 8, 15, 7], |
|||
X[10, 12, 5, 11], X[16, 19, 11, 20], X[8, 18, 9, 17], |
X[10, 12, 5, 11], X[16, 19, 11, 20], X[8, 18, 9, 17], |
||
X[18, 10, 19, 9], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></ |
X[18, 10, 19, 9], X[2, 5, 3, 6], X[4, 14, 1, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
{5, -2, 10, -4, 3, -6}]</nowiki></ |
{5, -2, 10, -4, 3, -6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 172]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a172_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 172]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a172_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
-q + ---- - ------- + 6 Sqrt[q] - 11 q + 9 q - 11 q + |
-q + ---- - ------- + 6 Sqrt[q] - 11 q + 9 q - 11 q + |
||
3/2 Sqrt[q] |
3/2 Sqrt[q] |
||
| Line 68: | Line 104: | ||
9/2 11/2 13/2 15/2 |
9/2 11/2 13/2 15/2 |
||
8 q - 6 q + 3 q - q</nowiki></ |
8 q - 6 q + 3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
6 + q + q + -- + -- + 11 q + 12 q + 11 q + 13 q + 6 q + |
6 + q + q + -- + -- + 11 q + 12 q + 11 q + 13 q + 6 q + |
||
4 2 |
4 2 |
||
| Line 76: | Line 117: | ||
12 14 16 18 20 22 |
12 14 16 18 20 22 |
||
7 q + 2 q + q + 2 q - q + q</nowiki></ |
7 q + 2 q + q + 2 q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
-(-----) + ----- - ---- + -- - ---- + ---- - --- + --- - --- + ---- - |
-(-----) + ----- - ---- + -- - ---- + ---- - --- + --- - --- + ---- - |
||
5 3 3 3 3 3 5 3 a z z 5 3 |
5 3 3 3 3 3 5 3 a z z 5 3 |
||
| Line 87: | Line 133: | ||
---- + 3 a z - ---- + ----- - ---- + a z - -- + ---- - ---- + -- |
---- + 3 a z - ---- + ----- - ---- + a z - -- + ---- - ---- + -- |
||
a 5 3 a 5 3 a 3 |
a 5 3 a 5 3 a 3 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
10 + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - ---- - |
10 + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - ---- - |
||
4 2 5 3 3 3 3 3 2 4 2 2 2 5 |
4 2 5 3 3 3 3 3 2 4 2 2 2 5 |
||
| Line 122: | Line 173: | ||
---- - -- - -- |
---- - -- - -- |
||
2 3 a |
2 3 a |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
2 4 1 1 1 2 5 2 4 q 4 |
2 4 1 1 1 2 5 2 4 q 4 |
||
9 q + 6 q + ----- + ----- + ----- + -- + ----- + - + ---- + 4 q t + |
9 q + 6 q + ----- + ----- + ----- + -- + ----- + - + ---- + 4 q t + |
||
| Line 134: | Line 190: | ||
12 4 14 5 14 6 16 6 |
12 4 14 5 14 6 16 6 |
||
3 q t + 3 q t + q t + q t</nowiki></ |
3 q t + 3 q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:36, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a172's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X20,15,17,16 X14,8,15,7 X10,12,5,11 X16,19,11,20 X8,18,9,17 X18,10,19,9 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {7, -8, 6, -3}, {9, -1, 4, -7, 8, -5}, {5, -2, 10, -4, 3, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(1) t(4)^2 t(3)^2+t(1) t(2) t(4)^2 t(3)^2-t(2) t(4)^2 t(3)^2+t(4)^2 t(3)^2-t(2) t(3)^2-t(1) t(2) t(4) t(3)^2+2 t(2) t(4) t(3)^2-t(4) t(3)^2+2 t(1) t(4)^2 t(3)-t(1) t(2) t(4)^2 t(3)-t(4)^2 t(3)-t(1) t(2) t(3)+2 t(2) t(3)-t(1) t(4) t(3)+2 t(1) t(2) t(4) t(3)-t(2) t(4) t(3)+2 t(4) t(3)-t(3)-t(1) t(4)^2-t(1)+t(1) t(2)-t(2)+2 t(1) t(4)-t(1) t(2) t(4)-t(4)+1}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 8 q^{9/2}-11 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-11 q^{3/2}+\frac{2}{q^{3/2}}-q^{15/2}+3 q^{13/2}-6 q^{11/2}+6 \sqrt{q}-\frac{6}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-5} -3 z^3 a^{-5} - a^{-5} z^{-3} -3 z a^{-5} -2 a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +3 a^{-3} z^{-3} +11 z a^{-3} +7 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +a z^{-3} -3 a^{-1} z^{-3} +3 a z-11 z a^{-1} +3 a z^{-1} -8 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -5 z^3 a^{-7} +2 z a^{-7} +8 z^6 a^{-6} -10 z^4 a^{-6} +2 z^2 a^{-6} +9 z^7 a^{-5} -20 z^5 a^{-5} +17 z^3 a^{-5} - a^{-5} z^{-3} -12 z a^{-5} +5 a^{-5} z^{-1} +5 z^8 a^{-4} -4 z^6 a^{-4} -17 z^4 a^{-4} +20 z^2 a^{-4} +3 a^{-4} z^{-2} -10 a^{-4} +z^9 a^{-3} +12 z^7 a^{-3} -51 z^5 a^{-3} +61 z^3 a^{-3} -3 a^{-3} z^{-3} -35 z a^{-3} +12 a^{-3} z^{-1} +7 z^8 a^{-2} -19 z^6 a^{-2} +26 z^2 a^{-2} +6 a^{-2} z^{-2} -19 a^{-2} +z^9 a^{-1} +a z^7+4 z^7 a^{-1} -5 a z^5-30 z^5 a^{-1} +10 a z^3+48 z^3 a^{-1} -a z^{-3} -3 a^{-1} z^{-3} -10 a z-31 z a^{-1} +5 a z^{-1} +12 a^{-1} z^{-1} +2 z^8-7 z^6+4 z^4+8 z^2+3 z^{-2} -10 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



