L11a256: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 256 | |
k = 256 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-10,3,-9,8,-6:4,-1,10,-2,11,-3,7,-8,5,-4,9,-7,6,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,2,-10,3,-9,8,-6:4,-1,10,-2,11,-3,7,-8,5,-4,9,-7,6,-5/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 256]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 256]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[14, 5, 15, 6], X[18, 10, 19, 9], |
|||
X[22, 18, 9, 17], X[8, 21, 1, 22], X[20, 15, 21, 16], |
X[22, 18, 9, 17], X[8, 21, 1, 22], X[20, 15, 21, 16], |
||
X[16, 8, 17, 7], X[6, 20, 7, 19], X[4, 11, 5, 12], X[2, 13, 3, 14]]</nowiki></ |
X[16, 8, 17, 7], X[6, 20, 7, 19], X[4, 11, 5, 12], X[2, 13, 3, 14]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{4, -1, 10, -2, 11, -3, 7, -8, 5, -4, 9, -7, 6, -5}]</nowiki></ |
{4, -1, 10, -2, 11, -3, 7, -8, 5, -4, 9, -7, 6, -5}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 256]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a256_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 256]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a256_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
||
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
Line 69: | Line 105: | ||
3/2 5/2 7/2 |
3/2 5/2 7/2 |
||
14 Sqrt[q] - 9 q + 4 q - q</nowiki></ |
14 Sqrt[q] - 9 q + 4 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
4 - q + q - q + q + --- - q + --- - q + -- - -- - |
4 - q + q - q + q + --- - q + --- - q + -- - -- - |
||
14 10 4 2 |
14 10 4 2 |
||
Line 77: | Line 118: | ||
2 6 8 10 |
2 6 8 10 |
||
2 q + 2 q - 2 q + q</nowiki></ |
2 q + 2 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
a a z 3 5 2 z 3 3 3 |
a a z 3 5 2 z 3 3 3 |
||
-(--) + -- - - - a z + 2 a z - 2 a z - ---- + 2 a z + 6 a z - |
-(--) + -- - - - a z + 2 a z - 2 a z - ---- + 2 a z + 6 a z - |
||
Line 87: | Line 133: | ||
5 3 z 5 3 5 5 5 7 3 7 |
5 3 z 5 3 5 5 5 7 3 7 |
||
3 a z - -- + 3 a z + 4 a z - a z + a z + a z |
3 a z - -- + 3 a z + 4 a z - a z + a z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
4 a a z 3 5 7 2 z |
4 a a z 3 5 7 2 z |
||
a - -- - -- + - - 2 a z - a z + 4 a z + 2 a z + 2 z - -- + |
a - -- - -- + - - 2 a z - a z + 4 a z + 2 a z + 2 z - -- + |
||
Line 123: | Line 174: | ||
9 3 9 5 9 2 10 4 10 |
9 3 9 5 9 2 10 4 10 |
||
6 a z - 10 a z - 4 a z - 2 a z - 2 a z</nowiki></ |
6 a z - 10 a z - 4 a z - 2 a z - 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
10 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
10 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
||
Line 136: | Line 192: | ||
2 2 4 2 4 3 6 3 8 4 |
2 2 4 2 4 3 6 3 8 4 |
||
3 q t + 6 q t + q t + 3 q t + q t</nowiki></ |
3 q t + 6 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:40, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a256's Link Presentations]
Planar diagram presentation | X10,1,11,2 X12,3,13,4 X14,5,15,6 X18,10,19,9 X22,18,9,17 X8,21,1,22 X20,15,21,16 X16,8,17,7 X6,20,7,19 X4,11,5,12 X2,13,3,14 |
Gauss code | {1, -11, 2, -10, 3, -9, 8, -6}, {4, -1, 10, -2, 11, -3, 7, -8, 5, -4, 9, -7, 6, -5} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|