L11a362: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 362 | |
k = 362 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,7,-9,8,-10,6,-11:4,-1,3,-2,11,-7,9,-8,10,-6,5,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,7,-9,8,-10,6,-11:4,-1,3,-2,11,-7,9,-8,10,-6,5,-3/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 362]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 362]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], |
|||
X[2, 11, 3, 12], X[4, 22, 5, 21], X[20, 10, 21, 9], X[16, 6, 17, 5], |
X[2, 11, 3, 12], X[4, 22, 5, 21], X[20, 10, 21, 9], X[16, 6, 17, 5], |
||
X[18, 8, 19, 7], X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 16, 1, 15]]</nowiki></ |
X[18, 8, 19, 7], X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 16, 1, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{4, -1, 3, -2, 11, -7, 9, -8, 10, -6, 5, -3}]</nowiki></ |
{4, -1, 3, -2, 11, -7, 9, -8, 10, -6, 5, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 362]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a362_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 362]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a362_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-Sqrt[q] + 2 q - 4 q + 6 q - 9 q + 10 q - 11 q + |
-Sqrt[q] + 2 q - 4 q + 6 q - 9 q + 10 q - 11 q + |
||
15/2 17/2 19/2 21/2 23/2 |
15/2 17/2 19/2 21/2 23/2 |
||
10 q - 8 q + 5 q - 3 q + q</nowiki></ |
10 q - 8 q + 5 q - 3 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
q + q - q + 2 q - q + 2 q + 2 q + 3 q - q + q + q - |
q + q - q + 2 q - q + 2 q + 2 q + 3 q - q + q + q - |
||
34 |
34 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 1 z 2 z z 3 z 3 z 4 z 3 z 4 z z |
1 1 z 2 z z 3 z 3 z 4 z 3 z 4 z z |
||
-(----) + ---- + -- - --- + -- + --- + ---- - ---- - ---- + ---- + -- - |
-(----) + ---- + -- - --- + -- + --- + ---- - ---- - ---- + ---- + -- - |
||
Line 85: | Line 131: | ||
---- - ---- + -- - -- - -- |
---- - ---- + -- - -- - -- |
||
7 5 3 7 5 |
7 5 3 7 5 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-6 1 1 z 2 z z 6 z 3 z 3 z z z |
-6 1 1 z 2 z z 6 z 3 z 3 z z z |
||
-a + ---- + ---- - --- - --- - -- - --- - --- + --- + --- + --- + |
-a + ---- + ---- - --- - --- - -- - --- - --- + --- + --- + --- + |
||
Line 121: | Line 172: | ||
--- |
--- |
||
6 |
6 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
4 6 -2 q q 6 8 8 2 10 2 |
4 6 -2 q q 6 8 8 2 10 2 |
||
3 q + 2 q + t + -- + -- + 4 q t + 2 q t + 5 q t + 4 q t + |
3 q + 2 q + t + -- + -- + 4 q t + 2 q t + 5 q t + 4 q t + |
||
Line 132: | Line 188: | ||
16 6 18 6 18 7 20 7 20 8 22 8 24 9 |
16 6 18 6 18 7 20 7 20 8 22 8 24 9 |
||
4 q t + 5 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></ |
4 q t + 5 q t + 2 q t + 3 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:40, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a362's Link Presentations]
Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,14,11,13 X2,11,3,12 X4,22,5,21 X20,10,21,9 X16,6,17,5 X18,8,19,7 X6,18,7,17 X8,20,9,19 X10,16,1,15 |
Gauss code | {1, -4, 2, -5, 7, -9, 8, -10, 6, -11}, {4, -1, 3, -2, 11, -7, 9, -8, 10, -6, 5, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 5 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^7 a^{-5} -z^7 a^{-7} +z^5 a^{-3} -4 z^5 a^{-5} -4 z^5 a^{-7} +z^5 a^{-9} +4 z^3 a^{-3} -3 z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} +3 z a^{-3} +z a^{-5} -2 z a^{-7} +z a^{-9} + a^{-5} z^{-1} - a^{-7} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-14} -z^2 a^{-14} +3 z^5 a^{-13} -4 z^3 a^{-13} +z a^{-13} +4 z^6 a^{-12} -4 z^4 a^{-12} +4 z^7 a^{-11} -3 z^5 a^{-11} -2 z^3 a^{-11} +2 z a^{-11} +4 z^8 a^{-10} -7 z^6 a^{-10} +6 z^4 a^{-10} -z^2 a^{-10} +3 z^9 a^{-9} -7 z^7 a^{-9} +9 z^5 a^{-9} -6 z^3 a^{-9} +z a^{-9} +z^{10} a^{-8} +2 z^8 a^{-8} -13 z^6 a^{-8} +16 z^4 a^{-8} -6 z^2 a^{-8} +5 z^9 a^{-7} -19 z^7 a^{-7} +25 z^5 a^{-7} -17 z^3 a^{-7} +6 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} -11 z^6 a^{-6} +16 z^4 a^{-6} -8 z^2 a^{-6} + a^{-6} +2 z^9 a^{-5} -7 z^7 a^{-5} +5 z^5 a^{-5} -2 z^3 a^{-5} +3 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -9 z^6 a^{-4} +11 z^4 a^{-4} -4 z^2 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +7 z^3 a^{-3} -3 z a^{-3} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|