L11a394: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 394 | |
k = 394 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,9,-8:11,-2,4,-7,6,-5,3,-9,8,-4,5,-6,7,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,9,-8:11,-2,4,-7,6,-5,3,-9,8,-4,5,-6,7,-3/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 394]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 394]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[22, 16, 9, 15], X[18, 12, 19, 11], |
|||
X[14, 20, 15, 19], X[20, 14, 21, 13], X[12, 22, 13, 21], |
X[14, 20, 15, 19], X[20, 14, 21, 13], X[12, 22, 13, 21], |
||
X[8, 18, 5, 17], X[16, 8, 17, 7], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></ |
X[8, 18, 5, 17], X[16, 8, 17, 7], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{11, -2, 4, -7, 6, -5, 3, -9, 8, -4, 5, -6, 7, -3}]</nowiki></ |
{11, -2, 4, -7, 6, -5, 3, -9, 8, -4, 5, -6, 7, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 394]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a394_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 394]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a394_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-10 + q - -- + - + 16 q - 16 q + 18 q - 16 q + 11 q - 7 q + |
-10 + q - -- + - + 16 q - 16 q + 18 q - 16 q + 11 q - 7 q + |
||
2 q |
2 q |
||
Line 69: | Line 105: | ||
7 8 |
7 8 |
||
3 q - q</nowiki></ |
3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
5 + q + q + q + -- + -- + 9 q + 3 q + 8 q + q - q - |
5 + q + q + q + -- + -- + 9 q + 3 q + 8 q + q - q - |
||
4 2 |
4 2 |
||
Line 77: | Line 118: | ||
14 16 18 20 22 24 |
14 16 18 20 22 24 |
||
6 q + q - 3 q - 2 q + q - q</nowiki></ |
6 q + q - 3 q - 2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
2 6 3 2 -2 1 3 2 a 2 |
2 6 3 2 -2 1 3 2 a 2 |
||
-3 - -- + -- - -- + 2 a - z - ----- + ----- - ----- + -- - 4 z - |
-3 - -- + -- - -- + 2 a - z - ----- + ----- - ----- + -- - 4 z - |
||
Line 89: | Line 135: | ||
---- + ---- - ---- + a z - 2 z - -- + ---- + -- + -- + -- |
---- + ---- - ---- + a z - 2 z - -- + ---- + -- + -- + -- |
||
6 4 2 6 4 2 4 2 |
6 4 2 6 4 2 4 2 |
||
a a a a a a a a</nowiki></ |
a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-6 5 4 2 -2 1 3 2 a 2 |
-6 5 4 2 -2 1 3 2 a 2 |
||
-3 + a + -- + -- - 4 a + z - ----- - ----- - ----- + -- + ---- + |
-3 + a + -- + -- - 4 a + z - ----- - ----- - ----- + -- + ---- + |
||
Line 130: | Line 181: | ||
---- + ---- + ---- + ---- + --- + --- |
---- + ---- + ---- + ---- + --- + --- |
||
2 5 3 a 4 2 |
2 5 3 a 4 2 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
11 q + 8 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
11 q + 8 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 4 5 3 3 2 2 q t t |
7 4 5 4 5 3 3 2 2 q t t |
||
Line 141: | Line 197: | ||
11 4 11 5 13 5 13 6 15 6 17 7 |
11 4 11 5 13 5 13 6 15 6 17 7 |
||
6 q t + 2 q t + 5 q t + q t + 2 q t + q t</nowiki></ |
6 q t + 2 q t + 5 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:41, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a394's Link Presentations]
Planar diagram presentation | X6172 X10,3,11,4 X22,16,9,15 X18,12,19,11 X14,20,15,19 X20,14,21,13 X12,22,13,21 X8,18,5,17 X16,8,17,7 X2536 X4,9,1,10 |
Gauss code | {1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, 4, -7, 6, -5, 3, -9, 8, -4, 5, -6, 7, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2 t(1) t(3)^3+2 t(1) t(2) t(3)^3-4 t(2) t(3)^3+2 t(3)^3+5 t(1) t(3)^2-3 t(1) t(2) t(3)^2+6 t(2) t(3)^2-3 t(3)^2-6 t(1) t(3)+3 t(1) t(2) t(3)-5 t(2) t(3)+3 t(3)+4 t(1)-2 t(1) t(2)+2 t(2)-2}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}}} (db) |
Jones polynomial | (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|