L11n359: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = n | |
t = <nowiki>n</nowiki> | |
||
k = 359 | |
k = 359 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:-6,5,-4,3,-7,8,-9,7:10,-1,-5,4,11,-2,-3,9,-8,6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:-6,5,-4,3,-7,8,-9,7:10,-1,-5,4,11,-2,-3,9,-8,6/goTop.html | |
||
Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, NonAlternating, 359]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 19, 12, 18], X[17, 9, 18, 8], |
|||
X[7, 17, 8, 16], X[15, 5, 16, 14], X[19, 15, 20, 22], |
X[7, 17, 8, 16], X[15, 5, 16, 14], X[19, 15, 20, 22], |
||
X[13, 20, 14, 21], X[21, 12, 22, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></ |
X[13, 20, 14, 21], X[21, 12, 22, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{10, -1, -5, 4, 11, -2, -3, 9, -8, 6}]</nowiki></ |
{10, -1, -5, 4, 11, -2, -3, 9, -8, 6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 359]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n359_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 359]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11n359_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>0</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
2 + q - q + -- - 2 q + 3 q - 2 q + 2 q - q |
2 + q - q + -- - 2 q + 3 q - 2 q + 2 q - q |
||
3 |
3 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
3 + q + --- + --- + --- + -- + -- + -- + -- + 2 q + 2 q + q - |
3 + q + --- + --- + --- + -- + -- + -- + -- + 2 q + 2 q + q - |
||
14 12 10 8 6 4 2 |
14 12 10 8 6 4 2 |
||
Line 73: | Line 114: | ||
10 14 16 |
10 14 16 |
||
q + q - q</nowiki></ |
q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
-2 2 4 -2 2 a a 2 z 2 z 2 2 |
-2 2 4 -2 2 a a 2 z 2 z 2 2 |
||
6 - a - 8 a + 3 a + z - ---- + -- + 9 z - -- - ---- - 9 a z + |
6 - a - 8 a + 3 a + z - ---- + -- + 9 z - -- - ---- - 9 a z + |
||
Line 82: | Line 128: | ||
4 2 4 2 4 6 |
4 2 4 2 4 6 |
||
a z + 6 z - 2 a z + z</nowiki></ |
a z + 6 z - 2 a z + z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Link[11, NonAlternating, 359]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-4 -2 2 4 -2 2 a a 2 a 2 a z z |
-4 -2 2 4 -2 2 a a 2 a 2 a z z |
||
8 - a - a + 14 a + 7 a - z - ---- - -- + --- + ---- + -- + -- - |
8 - a - a + 14 a + 7 a - z - ---- - -- + --- + ---- + -- + -- - |
||
Line 115: | Line 166: | ||
8 2 8 4 8 9 3 9 |
8 2 8 4 8 9 3 9 |
||
2 z + 3 a z + a z + a z + a z</nowiki></ |
2 z + 3 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
- + 3 q + q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 3 q + q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 6 7 5 7 4 5 4 5 3 3 3 5 2 |
q 11 6 7 5 7 4 5 4 5 3 3 3 5 2 |
||
Line 128: | Line 184: | ||
5 2 5 3 7 3 7 4 9 4 11 5 |
5 2 5 3 7 3 7 4 9 4 11 5 |
||
3 q t + q t + q t + q t + q t + q t</nowiki></ |
3 q t + q t + q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:50, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n359's Link Presentations]
Planar diagram presentation | X6172 X10,3,11,4 X11,19,12,18 X17,9,18,8 X7,17,8,16 X15,5,16,14 X19,15,20,22 X13,20,14,21 X21,12,22,13 X2536 X4,9,1,10 |
Gauss code | {1, -10, 2, -11}, {-6, 5, -4, 3, -7, 8, -9, 7}, {10, -1, -5, 4, 11, -2, -3, 9, -8, 6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 0 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|