L11a16: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 16 | |
k = 16 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,6,-9,7,-10,8,-4,11,-2,3,-6,9,-7,10,-8/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,5,-3:4,-1,2,-5,6,-9,7,-10,8,-4,11,-2,3,-6,9,-7,10,-8/goTop.html | |
||
| Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 16]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[14, 6, 15, 5], |
|||
X[8, 4, 9, 3], X[18, 10, 19, 9], X[20, 12, 21, 11], X[22, 14, 5, 13], |
X[8, 4, 9, 3], X[18, 10, 19, 9], X[20, 12, 21, 11], X[22, 14, 5, 13], |
||
X[10, 20, 11, 19], X[12, 22, 13, 21], X[2, 16, 3, 15]]</nowiki></ |
X[10, 20, 11, 19], X[12, 22, 13, 21], X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
| ⚫ | |||
3, -6, 9, -7, 10, -8}]</nowiki></ |
3, -6, 9, -7, 10, -8}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 16]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a16_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 16]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a16_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
------- - 3 Sqrt[q] + 3 q - 6 q + 6 q - 8 q + 8 q - |
------- - 3 Sqrt[q] + 3 q - 6 q + 6 q - 8 q + 8 q - |
||
Sqrt[q] |
Sqrt[q] |
||
13/2 15/2 17/2 19/2 21/2 |
13/2 15/2 17/2 19/2 21/2 |
||
7 q + 6 q - 4 q + 3 q - q</nowiki></ |
7 q + 6 q - 4 q + 3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-1 + q + q + 3 q + 4 q + 3 q + 4 q + 2 q - 2 q - 2 q - |
-1 + q + q + 3 q + 4 q + 3 q + 4 q + 2 q - 2 q - 2 q - |
||
22 24 28 30 |
22 24 28 30 |
||
2 q - 2 q - q + q</nowiki></ |
2 q - 2 q - q + q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
2 5 3 3 z 3 z 6 z 12 z 5 z 5 z 16 z |
2 5 3 3 z 3 z 6 z 12 z 5 z 5 z 16 z |
||
---- - ---- + ---- - --- + --- - ---- + ----- - ---- - ---- + ----- - |
---- - ---- + ---- - --- + --- - ---- + ----- - ---- - ---- + ----- - |
||
| Line 86: | Line 132: | ||
---- - -- + ---- - -- + -- |
---- - -- + ---- - -- + -- |
||
3 7 5 3 5 |
3 7 5 3 5 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-10 5 5 2 5 3 z z 2 z 2 z 2 z |
-10 5 5 2 5 3 z z 2 z 2 z 2 z |
||
-a + -- + -- - ---- - ---- - ---- - -- + -- + --- + ---- + ---- - |
-a + -- + -- - ---- - ---- - ---- - -- + -- + --- + ---- + ---- - |
||
| Line 116: | Line 167: | ||
---- + ---- + ---- - -- - ---- - ---- - ---- - ----- - ----- |
---- + ---- + ---- - -- - ---- - ---- - ---- - ----- - ----- |
||
8 6 4 2 7 5 3 6 4 |
8 6 4 2 7 5 3 6 4 |
||
a a a a a a a a a</nowiki></ |
a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
4 6 1 2 q q 2 q 6 8 8 2 |
4 6 1 2 q q 2 q 6 8 8 2 |
||
5 q + 3 q + ----- + -- + -- + -- + ---- + 3 q t + 3 q t + 5 q t + |
5 q + 3 q + ----- + -- + -- + -- + ---- + 3 q t + 3 q t + 5 q t + |
||
| Line 128: | Line 184: | ||
16 5 16 6 18 6 18 7 20 7 22 8 |
16 5 16 6 18 6 18 7 20 7 22 8 |
||
4 q t + 2 q t + 2 q t + q t + 2 q t + q t</nowiki></ |
4 q t + 2 q t + 2 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 17:51, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a16's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X14,6,15,5 X8493 X18,10,19,9 X20,12,21,11 X22,14,5,13 X10,20,11,19 X12,22,13,21 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {4, -1, 2, -5, 6, -9, 7, -10, 8, -4, 11, -2, 3, -6, 9, -7, 10, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(2)^6-t(2)^5+t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{7/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -8 q^{9/2}+6 q^{7/2}-6 q^{5/2}+3 q^{3/2}-q^{21/2}+3 q^{19/2}-4 q^{17/2}+6 q^{15/2}-7 q^{13/2}+8 q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^9 a^{-5} -z^7 a^{-3} +7 z^7 a^{-5} -z^7 a^{-7} -5 z^5 a^{-3} +16 z^5 a^{-5} -5 z^5 a^{-7} -5 z^3 a^{-3} +12 z^3 a^{-5} -6 z^3 a^{-7} +3 z a^{-3} -3 z a^{-5} +3 a^{-3} z^{-1} -5 a^{-5} z^{-1} +2 a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-13} +3 z^4 a^{-12} -2 z^2 a^{-12} +4 z^5 a^{-11} -3 z^3 a^{-11} +4 z^6 a^{-10} -3 z^4 a^{-10} -2 z^2 a^{-10} + a^{-10} +4 z^7 a^{-9} -6 z^5 a^{-9} +4 z^8 a^{-8} -10 z^6 a^{-8} +4 z^4 a^{-8} +4 z^9 a^{-7} -16 z^7 a^{-7} +20 z^5 a^{-7} -12 z^3 a^{-7} +z a^{-7} +2 a^{-7} z^{-1} +2 z^{10} a^{-6} -6 z^8 a^{-6} -z^6 a^{-6} +6 z^4 a^{-6} +4 z^2 a^{-6} -5 a^{-6} +7 z^9 a^{-5} -38 z^7 a^{-5} +63 z^5 a^{-5} -35 z^3 a^{-5} -z a^{-5} +5 a^{-5} z^{-1} +2 z^{10} a^{-4} -9 z^8 a^{-4} +8 z^6 a^{-4} +2 z^4 a^{-4} +3 z^2 a^{-4} -5 a^{-4} +3 z^9 a^{-3} -18 z^7 a^{-3} +33 z^5 a^{-3} -19 z^3 a^{-3} -2 z a^{-3} +3 a^{-3} z^{-1} +z^8 a^{-2} -5 z^6 a^{-2} +6 z^4 a^{-2} -z^2 a^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



