L11a408: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 408 | |
k = 408 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,4,-9,3,-8:11,-2,7,-4,8,-6,5,-3,9,-5,6,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-11:10,-1,4,-9,3,-8:11,-2,7,-4,8,-6,5,-3,9,-5,6,-7/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 408]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 408]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[18, 10, 19, 9], X[14, 8, 15, 7], |
|||
X[20, 17, 21, 18], X[16, 21, 17, 22], X[22, 14, 11, 13], |
X[20, 17, 21, 18], X[16, 21, 17, 22], X[22, 14, 11, 13], |
||
X[10, 16, 5, 15], X[8, 20, 9, 19], X[2, 5, 3, 6], X[4, 11, 1, 12]]</nowiki></ |
X[10, 16, 5, 15], X[8, 20, 9, 19], X[2, 5, 3, 6], X[4, 11, 1, 12]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{11, -2, 7, -4, 8, -6, 5, -3, 9, -5, 6, -7}]</nowiki></ |
{11, -2, 7, -4, 8, -6, 5, -3, 9, -5, 6, -7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 408]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a408_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 408]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a408_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>0</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
21 + q - -- + -- - -- + -- - -- - 17 q + 14 q - 8 q + 4 q - q |
21 + q - -- + -- - -- + -- - -- - 17 q + 14 q - 8 q + 4 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
2 + q + q - --- + q + q - --- + -- + q + -- + -- + 8 q + |
2 + q + q - --- + q + q - --- + -- + q + -- + -- + 8 q + |
||
16 10 8 4 2 |
16 10 8 4 2 |
||
Line 74: | Line 115: | ||
6 8 10 12 14 16 |
6 8 10 12 14 16 |
||
2 q + 4 q - 3 q + 2 q + q - q</nowiki></ |
2 q + 4 q - 3 q + 2 q + q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
2 2 4 6 2 1 a 2 z 2 z |
2 2 4 6 2 1 a 2 z 2 z |
||
-4 + -- + 3 a - 2 a + a - -- + ----- + -- - 5 z - -- + ---- + |
-4 + -- + 3 a - 2 a + a - -- + ----- + -- - 5 z - -- + ---- + |
||
Line 86: | Line 132: | ||
4 a z - 3 a z - 2 z + ---- + 3 a z - z |
4 a z - 3 a z - 2 z + ---- + 3 a z - z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
4 2 4 6 2 1 a 2 2 a 4 z 3 |
4 2 4 6 2 1 a 2 2 a 4 z 3 |
||
-6 - -- - 3 a - a - a + -- + ----- + -- - --- - --- + --- - 6 a z - |
-6 - -- - 3 a - a - a + -- + ----- + -- - --- - --- + --- - 6 a z - |
||
Line 127: | Line 178: | ||
4 8 4 z 9 3 9 10 2 10 |
4 8 4 z 9 3 9 10 2 10 |
||
4 a z + ---- + 7 a z + 3 a z + z + a z |
4 a z + ---- + 7 a z + 3 a z + z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
-- + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + 11 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 140: | Line 196: | ||
5 3 7 3 7 4 9 4 11 5 |
5 3 7 3 7 4 9 4 11 5 |
||
3 q t + 5 q t + q t + 3 q t + q t</nowiki></ |
3 q t + 5 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:53, 1 September 2005
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a408's Link Presentations]
Planar diagram presentation | X6172 X12,3,13,4 X18,10,19,9 X14,8,15,7 X20,17,21,18 X16,21,17,22 X22,14,11,13 X10,16,5,15 X8,20,9,19 X2536 X4,11,1,12 |
Gauss code | {1, -10, 2, -11}, {10, -1, 4, -9, 3, -8}, {11, -2, 7, -4, 8, -6, 5, -3, 9, -5, 6, -7} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation | ![]() |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2+2 t(1) t(2)^2-3 t(1) t(3) t(2)^2+5 t(3) t(2)^2-2 t(2)^2-3 t(1) t(3)^2 t(2)+5 t(3)^2 t(2)-5 t(1) t(2)+8 t(1) t(3) t(2)-8 t(3) t(2)+3 t(2)+2 t(1) t(3)^2-2 t(3)^2+2 t(1)-5 t(1) t(3)+3 t(3)-1}{\sqrt{t(1)} t(2) t(3)}} (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-8 q^3+14 q^2-17 q+21-19 q^{-1} +17 q^{-2} -12 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} } (db) |
Signature | 0 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6-3 z^2 a^4-2 a^4+3 z^4 a^2+4 z^2 a^2+a^2 z^{-2} +3 a^2-z^6-2 z^4-5 z^2-2 z^{-2} -4+2 z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} -z^2 a^{-4} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+3 a^5 z^7-8 a^5 z^5+z^5 a^{-5} +7 a^5 z^3-z^3 a^{-5} -2 a^5 z+4 a^4 z^8-6 a^4 z^6+4 z^6 a^{-4} -2 a^4 z^4-6 z^4 a^{-4} +5 a^4 z^2+3 z^2 a^{-4} -a^4+3 a^3 z^9+3 a^3 z^7+7 z^7 a^{-3} -19 a^3 z^5-10 z^5 a^{-3} +18 a^3 z^3+4 z^3 a^{-3} -6 a^3 z+a^2 z^{10}+10 a^2 z^8+7 z^8 a^{-2} -20 a^2 z^6-5 z^6 a^{-2} +5 a^2 z^4-5 z^4 a^{-2} +6 a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -3 a^2-4 a^{-2} +7 a z^9+4 z^9 a^{-1} +7 z^7 a^{-1} -20 a z^5-20 z^5 a^{-1} +14 a z^3+8 z^3 a^{-1} +4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +z^{10}+13 z^8-22 z^6+5 z^4+7 z^2+2 z^{-2} -6} (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|