L11a360: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 360 | |
k = 360 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,4,-9,5,-10,6,-11:7,-1,3,-2,8,-4,9,-5,10,-6,11,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,4,-9,5,-10,6,-11:7,-1,3,-2,8,-4,9,-5,10,-6,11,-3/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 360]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 360]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], |
|||
X[16, 6, 17, 5], X[18, 8, 19, 7], X[20, 10, 21, 9], X[2, 11, 3, 12], |
X[16, 6, 17, 5], X[18, 8, 19, 7], X[20, 10, 21, 9], X[2, 11, 3, 12], |
||
X[4, 16, 5, 15], X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 22, 1, 21]]</nowiki></ |
X[4, 16, 5, 15], X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 22, 1, 21]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{7, -1, 3, -2, 8, -4, 9, -5, 10, -6, 11, -3}]</nowiki></ |
{7, -1, 3, -2, 8, -4, 9, -5, 10, -6, 11, -3}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 360]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a360_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 360]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a360_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>7</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + q - 2 q + 2 q - 3 q + 3 q - 3 q + |
-q + q - 2 q + 2 q - 3 q + 3 q - 3 q + |
||
17/2 19/2 21/2 23/2 25/2 |
17/2 19/2 21/2 23/2 25/2 |
||
3 q - 3 q + 2 q - 2 q + q</nowiki></ |
3 q - 3 q + 2 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Link[11, Alternating, 360]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
⚫ | |||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 1 4 z 11 z 10 z 10 z 25 z 15 z 6 z |
1 1 4 z 11 z 10 z 10 z 25 z 15 z 6 z |
||
-(----) + ---- + --- - ---- + ---- + ----- - ----- + ----- + ---- - |
-(----) + ---- + --- - ---- + ---- + ----- - ----- + ----- + ---- - |
||
Line 82: | Line 128: | ||
----- + ---- + -- - ---- + -- - -- |
----- + ---- + -- - ---- + -- - -- |
||
7 5 9 7 5 7 |
7 5 9 7 5 7 |
||
a a a a a a</nowiki></ |
a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-6 1 1 z z z 3 z 13 z 11 z z z |
-6 1 1 z z z 3 z 13 z 11 z z z |
||
-a + ---- + ---- + --- + --- - --- - --- - ---- - ---- - --- + --- - |
-a + ---- + ---- + --- + --- - --- - --- - ---- - ---- - --- + --- - |
||
Line 112: | Line 163: | ||
---- + ---- + ---- - ---- - ---- - -- - --- - --- |
---- + ---- + ---- - ---- - ---- - -- - --- - --- |
||
10 8 6 9 7 5 8 6 |
10 8 6 9 7 5 8 6 |
||
a a a a a a a a</nowiki></ |
a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 |
|||
6 8 q q 8 10 10 2 12 2 12 3 |
6 8 q q 8 10 10 2 12 2 12 3 |
||
2 q + q + -- + -- + q t + q t + 2 q t + q t + q t + |
2 q + q + -- + -- + q t + q t + 2 q t + q t + q t + |
||
Line 124: | Line 180: | ||
20 6 20 7 22 7 22 8 24 8 26 9 |
20 6 20 7 22 7 22 8 24 8 26 9 |
||
2 q t + q t + q t + q t + q t + q t</nowiki></ |
2 q t + q t + q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 17:54, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a360's Link Presentations]
Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,14,11,13 X16,6,17,5 X18,8,19,7 X20,10,21,9 X2,11,3,12 X4,16,5,15 X6,18,7,17 X8,20,9,19 X10,22,1,21 |
Gauss code | {1, -7, 2, -8, 4, -9, 5, -10, 6, -11}, {7, -1, 3, -2, 8, -4, 9, -5, 10, -6, 11, -3} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 7 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^{10} a^{-6} -z^{10} a^{-8} -z^9 a^{-5} -3 z^9 a^{-7} -2 z^9 a^{-9} +7 z^8 a^{-6} +5 z^8 a^{-8} -2 z^8 a^{-10} +8 z^7 a^{-5} +21 z^7 a^{-7} +11 z^7 a^{-9} -2 z^7 a^{-11} -15 z^6 a^{-6} -5 z^6 a^{-8} +8 z^6 a^{-10} -2 z^6 a^{-12} -22 z^5 a^{-5} -48 z^5 a^{-7} -18 z^5 a^{-9} +6 z^5 a^{-11} -2 z^5 a^{-13} +9 z^4 a^{-6} -3 z^4 a^{-8} -6 z^4 a^{-10} +4 z^4 a^{-12} -2 z^4 a^{-14} +25 z^3 a^{-5} +42 z^3 a^{-7} +11 z^3 a^{-9} -2 z^3 a^{-11} +2 z^3 a^{-13} -2 z^3 a^{-15} +2 z^2 a^{-6} +3 z^2 a^{-8} -z^2 a^{-10} +z^2 a^{-14} -z^2 a^{-16} -11 z a^{-5} -13 z a^{-7} -3 z a^{-9} -z a^{-11} +z a^{-13} +z a^{-15} - a^{-6} + a^{-5} z^{-1} + a^{-7} z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|