L11a309: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 309 | |
k = 309 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,7,-9,8,-3,4,-5:3,-1,2,-7,9,-10,6,-8,11,-2,5,-4,10,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,7,-9,8,-3,4,-5:3,-1,2,-7,9,-10,6,-8,11,-2,5,-4,10,-6/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 309]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 309]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[10, 1, 11, 2], X[18, 11, 19, 12], X[6, 9, 7, 10], X[20, 7, 21, 8], |
|||
X[8, 19, 1, 20], X[22, 15, 9, 16], X[12, 4, 13, 3], X[16, 6, 17, 5], |
X[8, 19, 1, 20], X[22, 15, 9, 16], X[12, 4, 13, 3], X[16, 6, 17, 5], |
||
X[4, 14, 5, 13], X[14, 21, 15, 22], X[2, 18, 3, 17]]</nowiki></ |
X[4, 14, 5, 13], X[14, 21, 15, 22], X[2, 18, 3, 17]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{3, -1, 2, -7, 9, -10, 6, -8, 11, -2, 5, -4, 10, -6}]</nowiki></ |
{3, -1, 2, -7, 9, -10, 6, -8, 11, -2, 5, -4, 10, -6}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 309]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a309_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 309]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a309_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
||
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
Line 69: | Line 105: | ||
3/2 5/2 7/2 |
3/2 5/2 7/2 |
||
15 Sqrt[q] - 9 q + 4 q - q</nowiki></ |
15 Sqrt[q] - 9 q + 4 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
6 - q + --- - --- - q + --- - --- + --- + -- + -- - -- - 3 q + |
6 - q + --- - --- - q + --- - --- + --- + -- + -- - -- - 3 q + |
||
20 18 14 12 10 6 4 2 |
20 18 14 12 10 6 4 2 |
||
Line 77: | Line 118: | ||
6 8 10 |
6 8 10 |
||
2 q - 2 q + q</nowiki></ |
2 q - 2 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
-2 a 3 a a z 3 5 2 z 3 |
-2 a 3 a a z 3 5 2 z 3 |
||
---- + ---- - -- - - - a z + 4 a z - 2 a z - ---- + 3 a z + |
---- + ---- - -- - - - a z + 4 a z - 2 a z - ---- + 3 a z + |
||
Line 87: | Line 133: | ||
3 3 5 3 z 5 3 5 5 5 7 3 7 |
3 3 5 3 z 5 3 5 5 5 7 3 7 |
||
4 a z - 2 a z - -- + 3 a z + 3 a z - a z + a z + a z |
4 a z - 2 a z - -- + 3 a z + 3 a z - a z + a z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 |
|||
2 4 6 2 a 3 a a 2 z 3 5 |
2 4 6 2 a 3 a a 2 z 3 5 |
||
-3 a - 3 a - a + --- + ---- + -- + --- - a z - 7 a z - 4 a z + |
-3 a - 3 a - a + --- + ---- + -- + --- - a z - 7 a z - 4 a z + |
||
Line 124: | Line 175: | ||
4 8 6 8 9 3 9 5 9 2 10 4 10 |
4 8 6 8 9 3 9 5 9 2 10 4 10 |
||
11 a z - 8 a z - 8 a z - 16 a z - 8 a z - 3 a z - 3 a z</nowiki></ |
11 a z - 8 a z - 8 a z - 16 a z - 8 a z - 3 a z - 3 a z</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
13 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
13 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
||
Line 137: | Line 193: | ||
2 2 4 2 4 3 6 3 8 4 |
2 2 4 2 4 3 6 3 8 4 |
||
3 q t + 6 q t + q t + 3 q t + q t</nowiki></ |
3 q t + 6 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:02, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a309's Link Presentations]
Planar diagram presentation | X10,1,11,2 X18,11,19,12 X6,9,7,10 X20,7,21,8 X8,19,1,20 X22,15,9,16 X12,4,13,3 X16,6,17,5 X4,14,5,13 X14,21,15,22 X2,18,3,17 |
Gauss code | {1, -11, 7, -9, 8, -3, 4, -5}, {3, -1, 2, -7, 9, -10, 6, -8, 11, -2, 5, -4, 10, -6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|