L11a223: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 223 | |
k = 223 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,11,-3,4,-6:3,-1,2,-9,8,-11,10,-2,5,-4,6,-5,7,-8,9,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,11,-3,4,-6:3,-1,2,-9,8,-11,10,-2,5,-4,6,-5,7,-8,9,-7/goTop.html | |
||
Line 44: | Line 44: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[11, Alternating, 223]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 223]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[14, 9, 15, 10], X[4, 7, 5, 8], X[16, 6, 17, 5], |
|||
X[18, 16, 19, 15], X[6, 18, 1, 17], X[22, 19, 7, 20], |
X[18, 16, 19, 15], X[6, 18, 1, 17], X[22, 19, 7, 20], |
||
Line 56: | Line 71: | ||
X[20, 12, 21, 11], X[10, 22, 11, 21], X[2, 14, 3, 13], |
X[20, 12, 21, 11], X[10, 22, 11, 21], X[2, 14, 3, 13], |
||
X[12, 4, 13, 3]]</nowiki></ |
X[12, 4, 13, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{3, -1, 2, -9, 8, -11, 10, -2, 5, -4, 6, -5, 7, -8, 9, -7}]</nowiki></ |
{3, -1, 2, -9, 8, -11, 10, -2, 5, -4, 6, -5, 7, -8, 9, -7}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 223]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a223_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 223]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a223_ML.gif]]</td></tr><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
⚫ | |||
-q + ---- - ---- + ------- - 22 Sqrt[q] + 25 q - 25 q + |
-q + ---- - ---- + ------- - 22 Sqrt[q] + 25 q - 25 q + |
||
5/2 3/2 Sqrt[q] |
5/2 3/2 Sqrt[q] |
||
Line 71: | Line 107: | ||
7/2 9/2 11/2 13/2 15/2 |
7/2 9/2 11/2 13/2 15/2 |
||
21 q - 16 q + 9 q - 4 q + q</nowiki></ |
21 q - 16 q + 9 q - 4 q + q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
6 + q - -- + -- - -- - 4 q + 3 q - q + 4 q - 4 q + 4 q + |
6 + q - -- + -- - -- - 4 q + 3 q - q + 4 q - 4 q + 4 q + |
||
8 6 2 |
8 6 2 |
||
Line 79: | Line 120: | ||
16 18 20 24 |
16 18 20 24 |
||
q - 2 q + 3 q - q</nowiki></ |
q - 2 q + 3 q - q</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 2 2 a z 3 z 7 z 7 z 3 z 7 z |
1 2 2 a z 3 z 7 z 7 z 3 z 7 z |
||
-(----) + ---- - --- + - + -- - --- + --- - --- + 3 a z - ---- + ---- - |
-(----) + ---- - --- + - + -- - --- + --- - --- + 3 a z - ---- + ---- - |
||
Line 91: | Line 137: | ||
---- + 2 a z + ---- - ---- + a z - -- |
---- + 2 a z + ---- - ---- + a z - -- |
||
a 3 a a |
a 3 a a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
-a - ---- - ---- - --- - - + --- + --- + ---- + ---- + 5 a z + 2 z - |
-a - ---- - ---- - --- - - + --- + --- + ---- + ---- + 5 a z + 2 z - |
||
5 3 a z z 7 5 3 a |
5 3 a z z 7 5 3 a |
||
Line 126: | Line 177: | ||
11 z - ---- - ----- - ----- - ---- - ----- - ---- - ----- - ----- |
11 z - ---- - ----- - ----- - ---- - ----- - ---- - ----- - ----- |
||
6 4 2 5 3 a 4 2 |
6 4 2 5 3 a 4 2 |
||
a a a a a a a</nowiki></ |
a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
13 + 10 q + ----- + ----- + ----- + ----- + ----- + - + ---- + |
13 + 10 q + ----- + ----- + ----- + ----- + ----- + - + ---- + |
||
8 4 6 3 4 3 4 2 2 2 t 2 |
8 4 6 3 4 3 4 2 2 2 t 2 |
||
Line 137: | Line 193: | ||
8 4 10 4 10 5 12 5 12 6 14 6 16 7 |
8 4 10 4 10 5 12 5 12 6 14 6 16 7 |
||
6 q t + 10 q t + 3 q t + 6 q t + q t + 3 q t + q t</nowiki></ |
6 q t + 10 q t + 3 q t + 6 q t + q t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
Revision as of 18:08, 1 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a223's Link Presentations]
Planar diagram presentation | X8192 X14,9,15,10 X4758 X16,6,17,5 X18,16,19,15 X6,18,1,17 X22,19,7,20 X20,12,21,11 X10,22,11,21 X2,14,3,13 X12,4,13,3 |
Gauss code | {1, -10, 11, -3, 4, -6}, {3, -1, 2, -9, 8, -11, 10, -2, 5, -4, 6, -5, 7, -8, 9, -7} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|