L10a54: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- |
<!-- --> |
||
{{Link Page| |
{{Link Page| |
||
n = 10 | |
n = 10 | |
||
t = a | |
t = <nowiki>a</nowiki> | |
||
k = 54 | |
k = 54 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-10:7,-1,2,-3,4,-5,8,-7,9,-8,6,-4,10,-9/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-6,5,-10:7,-1,2,-3,4,-5,8,-7,9,-8,6,-4,10,-9/goTop.html | |
||
| Line 43: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Crossings[Link[10, Alternating, 54]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>10</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[10, Alternating, 54]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[18, 11, 19, 12], |
|||
X[12, 6, 13, 5], X[4, 18, 5, 17], X[14, 7, 15, 8], X[16, 14, 17, 13], |
X[12, 6, 13, 5], X[4, 18, 5, 17], X[14, 7, 15, 8], X[16, 14, 17, 13], |
||
X[20, 15, 7, 16], X[6, 19, 1, 20]]</nowiki></ |
X[20, 15, 7, 16], X[6, 19, 1, 20]]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -2, 3, -6, 5, -10}, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -2, 3, -6, 5, -10}, |
|||
{7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9}]</nowiki></ |
{7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9}]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 54]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L10a54_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<table><tr align=left> |
|||
| ⚫ | |||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Link[10, Alternating, 54]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L10a54_ML.gif]]</td></tr><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
| ⚫ | |||
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
q - ----- + ----- - ----- + ---- - ---- + ---- - ---- + |
||
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
15/2 13/2 11/2 9/2 7/2 5/2 3/2 |
||
| Line 69: | Line 105: | ||
6 3/2 |
6 3/2 |
||
------- - 4 Sqrt[q] + q |
------- - 4 Sqrt[q] + q |
||
Sqrt[q]</nowiki></ |
Sqrt[q]</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
-q + q - q + --- - q + q - --- + -- - q + -- + -- + |
-q + q - q + --- - q + q - --- + -- - q + -- + -- + |
||
18 10 8 4 2 |
18 10 8 4 2 |
||
| Line 77: | Line 118: | ||
2 4 |
2 4 |
||
2 q - q</nowiki></ |
2 q - q</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
a a 3 5 7 3 3 3 |
a a 3 5 7 3 3 3 |
||
-(-) + -- - a z - 2 a z + 4 a z - 2 a z + 2 a z - 5 a z + |
-(-) + -- - a z - 2 a z + 4 a z - 2 a z + 2 a z - 5 a z + |
||
| Line 85: | Line 131: | ||
5 3 7 3 5 3 5 5 5 3 7 |
5 3 7 3 5 3 5 5 5 3 7 |
||
6 a z - a z + a z - 4 a z + 2 a z - a z</nowiki></ |
6 a z - a z + a z - 4 a z + 2 a z - a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
2 a a 3 5 7 9 2 2 |
2 a a 3 5 7 9 2 2 |
||
-a + - + -- - a z + 2 a z + 5 a z + a z - a z + 3 a z + |
-a + - + -- - a z + 2 a z + 5 a z + a z - a z + 3 a z + |
||
| Line 105: | Line 156: | ||
2 8 4 8 6 8 3 9 5 9 |
2 8 4 8 6 8 3 9 5 9 |
||
5 a z - 10 a z - 5 a z - 2 a z - 2 a z</nowiki></ |
5 a z - 10 a z - 5 a z - 2 a z - 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
| ⚫ | |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
4 2 18 7 16 6 14 6 14 5 12 5 12 4 |
4 2 18 7 16 6 14 6 14 5 12 5 12 4 |
||
| Line 118: | Line 174: | ||
2 2 2 4 3 |
2 2 2 4 3 |
||
t + 3 q t + q t</nowiki></ |
t + 3 q t + q t</nowiki></code></td></tr> |
||
</table> }} |
|||
Revision as of 18:09, 1 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a54's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X18,11,19,12 X12,6,13,5 X4,18,5,17 X14,7,15,8 X16,14,17,13 X20,15,7,16 X6,19,1,20 |
| Gauss code | {1, -2, 3, -6, 5, -10}, {7, -1, 2, -3, 4, -5, 8, -7, 9, -8, 6, -4, 10, -9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-4 t(1)^2 t(2)^3+5 t(1) t(2)^3-t(2)^3+4 t(1)^2 t(2)^2-7 t(1) t(2)^2+4 t(2)^2-t(1)^2 t(2)+5 t(1) t(2)-4 t(2)-t(1)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-4 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{13}{q^{7/2}}+\frac{12}{q^{9/2}}-\frac{10}{q^{11/2}}+\frac{6}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-2 a^7 z+2 a^5 z^5+6 a^5 z^3+4 a^5 z-a^3 z^7-4 a^3 z^5-5 a^3 z^3-2 a^3 z+a^3 z^{-1} +a z^5+2 a z^3-a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^4 a^{10}+z^2 a^{10}-3 z^5 a^9+3 z^3 a^9-z a^9-5 z^6 a^8+5 z^4 a^8-2 z^2 a^8-6 z^7 a^7+7 z^5 a^7-4 z^3 a^7+z a^7-5 z^8 a^6+5 z^6 a^6-z^4 a^6-2 z^9 a^5-6 z^7 a^5+21 z^5 a^5-18 z^3 a^5+5 z a^5-10 z^8 a^4+25 z^6 a^4-19 z^4 a^4+6 z^2 a^4-2 z^9 a^3-4 z^7 a^3+23 z^5 a^3-19 z^3 a^3+2 z a^3+a^3 z^{-1} -5 z^8 a^2+14 z^6 a^2-10 z^4 a^2+3 z^2 a^2-a^2-4 z^7 a+12 z^5 a-8 z^3 a-z a+a z^{-1} -z^6+2 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



