L11n313: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
| Line 34: | Line 43: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 28, 2005, 22:58:49)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 313]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 313]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 49: | Line 58: | ||
{11, -2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7}]</nowiki></pre></td></tr> |
{11, -2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 313]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n313_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 313]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 313]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 2 3 3 2 3 -6 -5 -4 -3 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[11, NonAlternating, 313]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[11, NonAlternating, 313]], KnotSignature[Link[11, NonAlternating, 313]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, NonAlternating, 313]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 2 3 3 2 3 -6 -5 -4 -3 |
|||
-q + --- - --- + --- - -- + -- + q + q - q + q |
-q + --- - --- + --- - -- + -- + q + q - q + q |
||
12 11 10 9 8 |
12 11 10 9 8 |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 313]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -42 3 -38 -36 -34 3 3 6 6 6 5 |
||
-q - --- - q - q - q + --- + --- + --- + --- + --- + --- + |
-q - --- - q - q - q + --- + --- + --- + --- + --- + --- + |
||
40 32 30 28 26 24 22 |
40 32 30 28 26 24 22 |
||
| Line 75: | Line 76: | ||
18 |
18 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 313]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 12 14 |
||
6 8 10 12 2 a 5 a 4 a a 6 2 |
6 8 10 12 2 a 5 a 4 a a 6 2 |
||
a + 7 a - 13 a + 5 a + ---- - ----- + ----- - --- + 5 a z + |
a + 7 a - 13 a + 5 a + ---- - ----- + ----- - --- + 5 a z + |
||
| Line 84: | Line 85: | ||
8 2 10 2 6 4 8 4 10 4 6 6 8 6 |
8 2 10 2 6 4 8 4 10 4 6 6 8 6 |
||
9 a z - 9 a z + 5 a z + 6 a z - a z + a z + a z</nowiki></pre></td></tr> |
9 a z - 9 a z + 5 a z + 6 a z - a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 313]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 12 14 |
||
6 8 10 12 14 2 a 5 a 4 a a |
6 8 10 12 14 2 a 5 a 4 a a |
||
-a + 8 a + 20 a + 15 a + 3 a - ---- - ----- - ----- - --- + |
-a + 8 a + 20 a + 15 a + 3 a - ---- - ----- - ----- - --- + |
||
| Line 113: | Line 114: | ||
15 7 8 8 10 8 12 8 14 8 11 9 13 9 |
15 7 8 8 10 8 12 8 14 8 11 9 13 9 |
||
a z + a z + 3 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
a z + a z + 3 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 313]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 2 1 2 |
||
{0, --} |
|||
3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 313]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 2 1 2 |
|||
q + q + ------- + ------- + ------- + ------ + ------ + ------ + |
q + q + ------- + ------- + ------- + ------ + ------ + ------ + |
||
27 11 25 10 23 10 23 9 21 9 21 8 |
27 11 25 10 23 10 23 9 21 9 21 8 |
||
Revision as of 12:23, 31 August 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n313's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X9,20,10,21 X7,16,8,17 X13,18,14,19 X19,14,20,15 X15,22,16,11 X17,10,18,5 X21,8,22,9 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -4, 9, -3, 8}, {11, -2, -5, 6, -7, 4, -8, 5, -6, 3, -9, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2) t(3)^4+t(1) t(2)^2 t(3)^3+t(2)^2 t(3)^3-t(1) t(3)^3-t(1) t(2) t(3)^3-t(2) t(3)^3-2 t(2)^2 t(3)^2+2 t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2+t(2)^2 t(3)-t(1) t(3)+t(1) t(2) t(3)+t(2) t(3)-t(3)-t(2)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-3} - q^{-4} + q^{-5} + q^{-6} +3 q^{-8} -2 q^{-9} +3 q^{-10} -3 q^{-11} +2 q^{-12} - q^{-13} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{14} z^{-2} +4 a^{12} z^{-2} +5 a^{12}-a^{10} z^4-9 a^{10} z^2-5 a^{10} z^{-2} -13 a^{10}+a^8 z^6+6 a^8 z^4+9 a^8 z^2+2 a^8 z^{-2} +7 a^8+a^6 z^6+5 a^6 z^4+5 a^6 z^2+a^6 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{15}-5 z^5 a^{15}+7 z^3 a^{15}-4 z a^{15}+a^{15} z^{-1} +2 z^8 a^{14}-10 z^6 a^{14}+13 z^4 a^{14}-7 z^2 a^{14}-a^{14} z^{-2} +3 a^{14}+z^9 a^{13}-2 z^7 a^{13}-11 z^5 a^{13}+26 z^3 a^{13}-19 z a^{13}+5 a^{13} z^{-1} +4 z^8 a^{12}-23 z^6 a^{12}+38 z^4 a^{12}-29 z^2 a^{12}-4 a^{12} z^{-2} +15 a^{12}+z^9 a^{11}-2 z^7 a^{11}-16 z^5 a^{11}+42 z^3 a^{11}-33 z a^{11}+9 a^{11} z^{-1} +3 z^8 a^{10}-21 z^6 a^{10}+44 z^4 a^{10}-42 z^2 a^{10}-5 a^{10} z^{-2} +20 a^{10}+2 z^7 a^9-15 z^5 a^9+27 z^3 a^9-18 z a^9+5 a^9 z^{-1} +z^8 a^8-7 z^6 a^8+14 z^4 a^8-15 z^2 a^8-2 a^8 z^{-2} +8 a^8+z^7 a^7-5 z^5 a^7+4 z^3 a^7+z^6 a^6-5 z^4 a^6+5 z^2 a^6-a^6 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



