L11a351: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 351 | |
k = 351 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,7,-9,3,-4,6,-7,2,-10:4,-1,10,-3,5,-8,9,-2,11,-6,8,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-11,7,-9,3,-4,6,-7,2,-10:4,-1,10,-3,5,-8,9,-2,11,-6,8,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
Line 44: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 351]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[12, 1, 13, 2], X[18, 9, 19, 10], X[14, 6, 15, 5], X[6, 12, 7, 11], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 351]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[12, 1, 13, 2], X[18, 9, 19, 10], X[14, 6, 15, 5], X[6, 12, 7, 11], |
|||
X[22, 15, 11, 16], X[20, 8, 21, 7], X[8, 3, 9, 4], X[16, 21, 17, 22], |
X[22, 15, 11, 16], X[20, 8, 21, 7], X[8, 3, 9, 4], X[16, 21, 17, 22], |
||
X[4, 18, 5, 17], X[10, 13, 1, 14], X[2, 19, 3, 20]]</nowiki></ |
X[4, 18, 5, 17], X[10, 13, 1, 14], X[2, 19, 3, 20]]</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
⚫ | |||
{4, -1, 10, -3, 5, -8, 9, -2, 11, -6, 8, -5}]</nowiki></ |
{4, -1, 10, -3, 5, -8, 9, -2, 11, -6, 8, -5}]</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 3, -2, -4, 3, -2, -1, -2, 3, -4, 3, -2}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 351]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a351_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 351]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a351_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 351]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(15/2) 4 10 18 25 30 30 27 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 351]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(15/2) 4 10 18 25 30 30 27 |
|||
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + |
||
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
Line 105: | Line 78: | ||
3/2 5/2 7/2 |
3/2 5/2 7/2 |
||
20 Sqrt[q] - 13 q + 5 q - q</nowiki></ |
20 Sqrt[q] - 13 q + 5 q - q</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
⚫ | |||
8 - q + --- - --- + --- - --- + --- - q + -- - -- - 3 q + 5 q - |
8 - q + --- - --- + --- - --- + --- - q + -- - -- - 3 q + 5 q - |
||
20 18 14 12 10 4 2 |
20 18 14 12 10 4 2 |
||
Line 118: | Line 86: | ||
8 10 |
8 10 |
||
3 q + q</nowiki></ |
3 q + q</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
⚫ | |||
1 a 2 z 3 5 7 z 3 |
1 a 2 z 3 5 7 z 3 |
||
-(---) + - - --- + 4 a z - 3 a z + 2 a z - a z - -- + 6 a z - |
-(---) + - - --- + 4 a z - 3 a z + 2 a z - a z - -- + 6 a z - |
||
Line 133: | Line 96: | ||
3 3 5 3 z 5 3 5 7 |
3 3 5 3 z 5 3 5 7 |
||
5 a z + 3 a z - -- + 3 a z - 3 a z + a z |
5 a z + 3 a z - -- + 3 a z - 3 a z + a z |
||
a</nowiki></ |
a</nowiki></pre></td></tr> |
||
⚫ | |||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
⚫ | |||
1 - --- - - + --- + 4 a z + a z + 2 z + 4 a z + 7 a z + 4 a z - |
1 - --- - - + --- + 4 a z + a z + 2 z + 4 a z + 7 a z + 4 a z - |
||
a z z a |
a z z a |
||
Line 171: | Line 129: | ||
5 9 2 10 4 10 |
5 9 2 10 4 10 |
||
9 a z - 4 a z - 4 a z</nowiki></ |
9 a z - 4 a z - 4 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 351]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
⚫ | |||
16 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
16 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 |
||
Line 189: | Line 142: | ||
2 2 4 2 4 3 6 3 8 4 |
2 2 4 2 4 3 6 3 8 4 |
||
4 q t + 9 q t + q t + 4 q t + q t</nowiki></ |
4 q t + 9 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
Revision as of 17:42, 2 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a351's Link Presentations]
Planar diagram presentation | X12,1,13,2 X18,9,19,10 X14,6,15,5 X6,12,7,11 X22,15,11,16 X20,8,21,7 X8394 X16,21,17,22 X4,18,5,17 X10,13,1,14 X2,19,3,20 |
Gauss code | {1, -11, 7, -9, 3, -4, 6, -7, 2, -10}, {4, -1, 10, -3, 5, -8, 9, -2, 11, -6, 8, -5} |
A Braid Representative | ||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{7/2}+5 q^{5/2}-13 q^{3/2}+20 \sqrt{q}-\frac{27}{\sqrt{q}}+\frac{30}{q^{3/2}}-\frac{30}{q^{5/2}}+\frac{25}{q^{7/2}}-\frac{18}{q^{9/2}}+\frac{10}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{1}{q^{15/2}}} (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 (-z)+3 a^5 z^3+2 a^5 z-3 a^3 z^5-5 a^3 z^3-3 a^3 z+a z^7+3 a z^5-z^5 a^{-1} +6 a z^3-z^3 a^{-1} +4 a z+a z^{-1} -2 z a^{-1} - a^{-1} z^{-1} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^8 z^6-2 a^8 z^4+a^8 z^2+4 a^7 z^7-8 a^7 z^5+5 a^7 z^3-a^7 z+8 a^6 z^8-16 a^6 z^6+12 a^6 z^4-4 a^6 z^2+9 a^5 z^9-13 a^5 z^7+3 a^5 z^5+2 a^5 z^3+4 a^4 z^{10}+14 a^4 z^8-44 a^4 z^6+33 a^4 z^4-7 a^4 z^2+22 a^3 z^9-36 a^3 z^7+9 a^3 z^5+z^5 a^{-3} +3 a^3 z^3+4 a^2 z^{10}+24 a^2 z^8-59 a^2 z^6+5 z^6 a^{-2} +33 a^2 z^4-2 z^4 a^{-2} -4 a^2 z^2+13 a z^9-6 a z^7+13 z^7 a^{-1} -19 a z^5-16 z^5 a^{-1} +13 a z^3+7 z^3 a^{-1} -4 a z-3 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +18 z^8-27 z^6+12 z^4-2 z^2-1} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|