L11a146: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
||
<!-- --> |
<!-- <math>\text{Null}</math> --> |
||
{{Link Page| |
{{Link Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = a | |
||
k = 146 | |
k = 146 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-11,9,-7:4,-1,2,-3,8,-9,5,-10,6,-4,11,-8,7,-5,10,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-2,3,-11,9,-7:4,-1,2,-3,8,-9,5,-10,6,-4,11,-8,7,-5,10,-6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
| ⚫ | |||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 49: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2 |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[11, Alternating, 146]]]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[16, 8, 17, 7], |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Length[Skeleton[Link[11, Alternating, 146]]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[16, 8, 17, 7], |
|||
X[20, 14, 21, 13], X[22, 16, 7, 15], X[6, 19, 1, 20], |
X[20, 14, 21, 13], X[22, 16, 7, 15], X[6, 19, 1, 20], |
||
| Line 71: | Line 61: | ||
X[18, 11, 19, 12], X[12, 6, 13, 5], X[14, 22, 15, 21], |
X[18, 11, 19, 12], X[12, 6, 13, 5], X[14, 22, 15, 21], |
||
X[4, 18, 5, 17]]</nowiki></ |
X[4, 18, 5, 17]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -2, 3, -11, 9, -7}, |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[{1, -2, 3, -11, 9, -7}, |
|||
{4, -1, 2, -3, 8, -9, 5, -10, 6, -4, 11, -8, 7, -5, 10, -6}]</nowiki></ |
{4, -1, 2, -3, 8, -9, 5, -10, 6, -4, 11, -8, 7, -5, 10, -6}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, -1, 2, -1, 2, 2, 2, 2}]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 146]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a146_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 146]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
|||
<tr align=left><td></td><td>[[Image:L11a146_ML.gif]]</td></tr><tr align=left> |
|||
< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 146]][q]</nowiki></pre></td></tr> |
||
<td>< |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(9/2) 3 5 9 11 3/2 |
||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>KnotSignature[Link[11, Alternating, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>1</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -(9/2) 3 5 9 11 3/2 |
|||
q - ---- + ---- - ---- + ------- - 14 Sqrt[q] + 13 q - |
q - ---- + ---- - ---- + ------- - 14 Sqrt[q] + 13 q - |
||
7/2 5/2 3/2 Sqrt[q] |
7/2 5/2 3/2 Sqrt[q] |
||
| Line 107: | Line 78: | ||
5/2 7/2 9/2 11/2 13/2 |
5/2 7/2 9/2 11/2 13/2 |
||
12 q + 9 q - 5 q + 3 q - q</nowiki></ |
12 q + 9 q - 5 q + 3 q - q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
| ⚫ | |||
5 - q + q - q + -- + -- + -- - q + 4 q - 2 q - q - 3 q + |
5 - q + q - q + -- + -- + -- - q + 4 q - 2 q - q - 3 q + |
||
6 4 2 |
6 4 2 |
||
| Line 120: | Line 86: | ||
14 16 18 |
14 16 18 |
||
q - q + q</nowiki></ |
q - q + q</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
| ⚫ | |||
1 3 2 a z z 7 z 15 z 3 5 z |
1 3 2 a z z 7 z 15 z 3 5 z |
||
---- - --- + --- - -- + - - a z - ---- + ----- - 7 a z - ---- + |
---- - --- + --- - -- + - - a z - ---- + ----- - 7 a z - ---- + |
||
| Line 137: | Line 98: | ||
----- - 5 a z - -- + ---- - a z + -- |
----- - 5 a z - -- + ---- - a z + -- |
||
a 3 a a |
a 3 a a |
||
a</nowiki></ |
a</nowiki></pre></td></tr> |
||
| ⚫ | |||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
| ⚫ | |||
-4 3 1 3 2 a 2 z z 3 2 3 z |
-4 3 1 3 2 a 2 z z 3 2 3 z |
||
3 + a + -- - ---- - --- - --- - --- - - + 2 a z + a z + z - ---- - |
3 + a + -- - ---- - --- - --- - --- - - + 2 a z + a z + z - ---- - |
||
| Line 178: | Line 134: | ||
4 a z - ---- - ---- - 4 a z - 2 z - ----- |
4 a z - ---- - ---- - 4 a z - 2 z - ----- |
||
3 a 2 |
3 a 2 |
||
a a</nowiki></ |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 146]][q, t]</nowiki></pre></td></tr> |
|||
</table> |
|||
| ⚫ | |||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
| ⚫ | |||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
| ⚫ | |||
8 + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + |
8 + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + |
||
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t |
10 5 8 4 6 4 6 3 4 3 4 2 2 2 t |
||
| Line 196: | Line 147: | ||
8 4 10 4 10 5 12 5 14 6 |
8 4 10 4 10 5 12 5 14 6 |
||
2 q t + 3 q t + q t + 2 q t + q t</nowiki></ |
2 q t + 3 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> }} |
</table> }} |
||
Revision as of 17:56, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a146's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,8,17,7 X20,14,21,13 X22,16,7,15 X6,19,1,20 X18,11,19,12 X12,6,13,5 X14,22,15,21 X4,18,5,17 |
| Gauss code | {1, -2, 3, -11, 9, -7}, {4, -1, 2, -3, 8, -9, 5, -10, 6, -4, 11, -8, 7, -5, 10, -6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1)^2 t(2)^6-t(1) t(2)^6-2 t(1)^2 t(2)^5+3 t(1) t(2)^5-t(2)^5+2 t(1)^2 t(2)^4-5 t(1) t(2)^4+2 t(2)^4-2 t(1)^2 t(2)^3+5 t(1) t(2)^3-2 t(2)^3+2 t(1)^2 t(2)^2-5 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+3 t(1) t(2)-2 t(2)-t(1)+1}{t(1) t(2)^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+3 q^{11/2}-5 q^{9/2}+9 q^{7/2}-12 q^{5/2}+13 q^{3/2}-14 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-3} -5 z^5 a^{-3} -7 z^3 a^{-3} -z a^{-3} + a^{-3} z^{-1} +z^9 a^{-1} -a z^7+7 z^7 a^{-1} -5 a z^5+17 z^5 a^{-1} -7 a z^3+15 z^3 a^{-1} -a z+z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} -2 z^3 a^{-7} +3 z^6 a^{-6} -7 z^4 a^{-6} +3 z^2 a^{-6} +4 z^7 a^{-5} -8 z^5 a^{-5} +3 z^3 a^{-5} +4 z^8 a^{-4} +a^4 z^6-7 z^6 a^{-4} -3 a^4 z^4+2 z^4 a^{-4} +a^4 z^2+3 z^2 a^{-4} - a^{-4} +4 z^9 a^{-3} +3 a^3 z^7-12 z^7 a^{-3} -10 a^3 z^5+20 z^5 a^{-3} +7 a^3 z^3-13 z^3 a^{-3} -a^3 z+2 z a^{-3} + a^{-3} z^{-1} +2 z^{10} a^{-2} +4 a^2 z^8-3 z^8 a^{-2} -12 a^2 z^6+7 a^2 z^4+7 z^4 a^{-2} -3 a^{-2} +4 a z^9+8 z^9 a^{-1} -13 a z^7-32 z^7 a^{-1} +14 a z^5+53 z^5 a^{-1} -6 a z^3-31 z^3 a^{-1} -2 a z+z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +2 z^{10}-3 z^8-3 z^6+8 z^4-z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



