L11a542: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
k = 542 | |
k = 542 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-11:10,-2,8,-7:2,-1,5,-3,9,-10:4,-5,11,-9,6,-8,7,-6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-11:10,-2,8,-7:2,-1,5,-3,9,-10:4,-5,11,-9,6,-8,7,-6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
Line 44: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 542]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 542]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Line 61: | Line 68: | ||
{4, -5, 11, -9, 6, -8, 7, -6}]</nowiki></pre></td></tr> |
{4, -5, 11, -9, 6, -8, 7, -6}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 542]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 3, 3, 4, 3, -2, -1, 3, -2, 3, -2, 3, -4, 3, 3, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 542]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a542_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 542]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 542]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(3/2) 4 3/2 5/2 7/2 9/2 |
|||
q - ------- + 8 Sqrt[q] - 17 q + 20 q - 27 q + 25 q - |
q - ------- + 8 Sqrt[q] - 17 q + 20 q - 27 q + 25 q - |
||
Sqrt[q] |
Sqrt[q] |
||
Line 71: | Line 80: | ||
11/2 13/2 15/2 17/2 19/2 |
11/2 13/2 15/2 17/2 19/2 |
||
24 q + 17 q - 11 q + 5 q - q</nowiki></pre></td></tr> |
24 q + 17 q - 11 q + 5 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 542]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 2 2 4 6 8 10 12 14 |
||
-1 - q + -- + 2 q + 9 q + 4 q + 16 q + 11 q + 12 q + 14 q + |
-1 - q + -- + 2 q + 9 q + 4 q + 16 q + 11 q + 12 q + 14 q + |
||
2 |
2 |
||
Line 79: | Line 88: | ||
16 18 20 24 26 28 |
16 18 20 24 26 28 |
||
4 q + 10 q - q + 2 q - 3 q + q</nowiki></pre></td></tr> |
4 q + 10 q - q + 2 q - 3 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 542]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3 3 1 2 4 2 z 3 z 2 z |
||
-(-----) + ----- - ----- + ---- + ---- - ---- + --- + -- - --- + --- - |
-(-----) + ----- - ----- + ---- + ---- - ---- + --- + -- - --- + --- - |
||
7 3 5 3 3 3 3 5 3 a z 7 5 3 |
7 3 5 3 3 3 3 5 3 a z 7 5 3 |
||
Line 90: | Line 99: | ||
7 5 3 a 7 5 3 a 5 3 |
7 5 3 a 7 5 3 a 5 3 |
||
a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 542]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-4 7 4 1 3 3 1 3 6 3 |
||
-- - -- - -- - ----- - ----- - ----- - ---- + ----- + ----- + ----- + |
-- - -- - -- - ----- - ----- - ----- - ---- + ----- + ----- + ----- + |
||
6 4 2 7 3 5 3 3 3 3 6 2 4 2 2 2 |
6 4 2 7 3 5 3 3 3 3 6 2 4 2 2 2 |
||
Line 131: | Line 140: | ||
6 4 |
6 4 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 542]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
||
2 4 1 -2 3 5 3 q 4 6 |
2 4 1 -2 3 5 3 q 4 6 |
||
12 q + 7 q + ----- + t + ----- + - + ---- + 10 q t + 10 q t + |
12 q + 7 q + ----- + t + ----- + - + ---- + 10 q t + 10 q t + |
Revision as of 18:27, 2 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a542's Link Presentations]
Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,16,3,15 X16,7,17,8 X22,20,15,19 X14,22,11,21 X20,14,21,13 X18,10,19,9 X10,12,5,11 X4,17,1,18 |
Gauss code | {1, -4, 3, -11}, {10, -2, 8, -7}, {2, -1, 5, -3, 9, -10}, {4, -5, 11, -9, 6, -8, 7, -6} |
A Braid Representative | ||||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | (db) |
Jones polynomial | (db) |
Signature | 3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-11} +5 z^6 a^{-10} -4 z^4 a^{-10} +11 z^7 a^{-9} -15 z^5 a^{-9} +6 z^3 a^{-9} +13 z^8 a^{-8} -16 z^6 a^{-8} +3 z^4 a^{-8} +z^2 a^{-8} +8 z^9 a^{-7} +6 z^7 a^{-7} -31 z^5 a^{-7} +20 z^3 a^{-7} + a^{-7} z^{-3} -3 z a^{-7} -2 a^{-7} z^{-1} +2 z^{10} a^{-6} +22 z^8 a^{-6} -43 z^6 a^{-6} +14 z^4 a^{-6} +3 z^2 a^{-6} -3 a^{-6} z^{-2} +4 a^{-6} +13 z^9 a^{-5} -5 z^7 a^{-5} -35 z^5 a^{-5} +36 z^3 a^{-5} +3 a^{-5} z^{-3} -11 z a^{-5} -3 a^{-5} z^{-1} +2 z^{10} a^{-4} +15 z^8 a^{-4} -32 z^6 a^{-4} +9 z^4 a^{-4} +4 z^2 a^{-4} -6 a^{-4} z^{-2} +7 a^{-4} +5 z^9 a^{-3} +4 z^7 a^{-3} -30 z^5 a^{-3} +32 z^3 a^{-3} +3 a^{-3} z^{-3} -11 z a^{-3} -3 a^{-3} z^{-1} +6 z^8 a^{-2} -9 z^6 a^{-2} +3 z^2 a^{-2} -3 a^{-2} z^{-2} +4 a^{-2} +4 z^7 a^{-1} -10 z^5 a^{-1} +10 z^3 a^{-1} + a^{-1} z^{-3} -3 z a^{-1} -2 a^{-1} z^{-1} +z^6-2 z^4+z^2} (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|