L11n458: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 458 | |
k = 458 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:-4,3,-6,5:10,-1,-3,9,-8,4:-11,2,-5,7,-9,8,-7,6/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,-2,11:-4,3,-6,5:10,-1,-3,9,-8,4:-11,2,-5,7,-9,8,-7,6/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 42: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 458]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, NonAlternating, 458]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 57: | Line 66: | ||
{-11, 2, -5, 7, -9, 8, -7, 6}]</nowiki></pre></td></tr> |
{-11, 2, -5, 7, -9, 8, -7, 6}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, NonAlternating, 458]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[7, {1, 2, 3, 3, -4, 3, -2, -1, 3, -5, 4, 3, 2, 3, -4, 3, 5, 4, 3, 6, |
|||
| ⚫ | |||
5, 4, -3, -2, -3, -4, 3, -5, -6}]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, NonAlternating, 458]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11n458_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, NonAlternating, 458]]</nowiki></pre></td></tr> |
|||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 15/2 |
|||
-3 q + 5 q - 11 q + 11 q - 15 q + 12 q - 11 q + |
-3 q + 5 q - 11 q + 11 q - 15 q + 12 q - 11 q + |
||
17/2 19/2 21/2 |
17/2 19/2 21/2 |
||
7 q - 4 q + q</nowiki></pre></td></tr> |
7 q - 4 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, NonAlternating, 458]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 8 10 12 14 16 18 20 |
||
3 q + 5 q + 8 q + 6 q + 13 q + 10 q + 12 q + 10 q + |
3 q + 5 q + 8 q + 6 q + 13 q + 10 q + 12 q + 10 q + |
||
22 24 28 30 32 |
22 24 28 30 32 |
||
5 q + 7 q + q + 2 q - q</nowiki></pre></td></tr> |
5 q + 7 q + q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, NonAlternating, 458]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3 3 1 1 6 9 4 4 z |
||
-(-----) + ----- - ----- + ----- - ---- + ---- - ---- + ---- + --- - |
-(-----) + ----- - ----- + ----- - ---- + ---- - ---- + ---- + --- - |
||
9 3 7 3 5 3 3 3 9 7 5 3 7 |
9 3 7 3 5 3 3 3 9 7 5 3 7 |
||
| Line 83: | Line 96: | ||
5 3 9 5 3 7 5 |
5 3 9 5 3 7 5 |
||
a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, NonAlternating, 458]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10 19 10 1 3 3 1 3 6 3 |
||
-- + -- + -- + ----- + ----- + ----- + ----- - ----- - ----- - ----- - |
-- + -- + -- + ----- + ----- + ----- + ----- - ----- - ----- - ----- - |
||
8 6 4 9 3 7 3 5 3 3 3 8 2 6 2 4 2 |
8 6 4 9 3 7 3 5 3 3 3 8 2 6 2 4 2 |
||
| Line 118: | Line 131: | ||
10 8 6 9 7 |
10 8 6 9 7 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, NonAlternating, 458]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 4 6 6 2 8 2 8 3 10 3 |
||
3 q + 2 q + 4 q t + q t + 7 q t + 6 q t + 6 q t + 5 q t + |
3 q + 2 q + 4 q t + q t + 7 q t + 6 q t + 6 q t + 5 q t + |
||
Revision as of 18:29, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n458's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X7,21,8,20 X19,5,20,10 X13,19,14,22 X21,11,22,18 X17,15,18,14 X9,17,10,16 X15,9,16,8 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {-4, 3, -6, 5}, {10, -1, -3, 9, -8, 4}, {-11, 2, -5, 7, -9, 8, -7, 6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(4)^2 t(3)^2-t(4)^2 t(3)^2+t(1) t(3)^2-t(1) t(2) t(3)^2-2 t(1) t(4) t(3)^2+2 t(1) t(2) t(4) t(3)^2+t(4) t(3)^2-t(1) t(4)^2 t(3)-2 t(2) t(4)^2 t(3)+2 t(4)^2 t(3)-2 t(1) t(3)+2 t(1) t(2) t(3)-t(2) t(3)+3 t(1) t(4) t(3)-3 t(1) t(2) t(4) t(3)+3 t(2) t(4) t(3)-3 t(4) t(3)+t(2) t(4)^2-t(4)^2-t(1) t(2)+t(2)+t(1) t(2) t(4)-2 t(2) t(4)+2 t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 11 q^{9/2}-11 q^{7/2}+5 q^{5/2}-3 q^{3/2}+q^{21/2}-4 q^{19/2}+7 q^{17/2}-11 q^{15/2}+12 q^{13/2}-15 q^{11/2} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-9} - a^{-9} z^{-3} - a^{-9} z^{-1} -z^5 a^{-7} +3 a^{-7} z^{-3} +4 z a^{-7} +6 a^{-7} z^{-1} -2 z^5 a^{-5} -6 z^3 a^{-5} -3 a^{-5} z^{-3} -10 z a^{-5} -9 a^{-5} z^{-1} +3 z^3 a^{-3} + a^{-3} z^{-3} +6 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-12} -2 z^4 a^{-12} +z^2 a^{-12} +4 z^7 a^{-11} -11 z^5 a^{-11} +8 z^3 a^{-11} -2 z a^{-11} +5 z^8 a^{-10} -11 z^6 a^{-10} +2 z^4 a^{-10} +2 z^2 a^{-10} +2 z^9 a^{-9} +7 z^7 a^{-9} -33 z^5 a^{-9} +32 z^3 a^{-9} - a^{-9} z^{-3} -16 z a^{-9} +5 a^{-9} z^{-1} +11 z^8 a^{-8} -25 z^6 a^{-8} +9 z^4 a^{-8} +10 z^2 a^{-8} +3 a^{-8} z^{-2} -10 a^{-8} +2 z^9 a^{-7} +10 z^7 a^{-7} -41 z^5 a^{-7} +52 z^3 a^{-7} -3 a^{-7} z^{-3} -31 z a^{-7} +12 a^{-7} z^{-1} +6 z^8 a^{-6} -10 z^6 a^{-6} +2 z^4 a^{-6} +18 z^2 a^{-6} +6 a^{-6} z^{-2} -19 a^{-6} +7 z^7 a^{-5} -19 z^5 a^{-5} +34 z^3 a^{-5} -3 a^{-5} z^{-3} -27 z a^{-5} +12 a^{-5} z^{-1} +3 z^6 a^{-4} -3 z^4 a^{-4} +9 z^2 a^{-4} +3 a^{-4} z^{-2} -10 a^{-4} +6 z^3 a^{-3} - a^{-3} z^{-3} -10 z a^{-3} +5 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|






