L11a159: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 159 | |
k = 159 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,6,-11:4,-1,3,-2,7,-10,9,-6,11,-7,8,-9,10,-8,5,-3/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-5,6,-11:4,-1,3,-2,7,-10,9,-6,11,-7,8,-9,10,-8,5,-3/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 44: | Line 51: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 2, 2005, 15:8:39)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 159]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[11, Alternating, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 61: | Line 68: | ||
{4, -1, 3, -2, 7, -10, 9, -6, 11, -7, 8, -9, 10, -8, 5, -3}]</nowiki></pre></td></tr> |
{4, -1, 3, -2, 7, -10, 9, -6, 11, -7, 8, -9, 10, -8, 5, -3}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[11, Alternating, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, -2, 3, -2, 1, -2, 1, -3, -2, 4, 3, -2, 3, -4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[11, Alternating, 159]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L11a159_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[11, Alternating, 159]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[11, Alternating, 159]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(13/2) 4 9 14 20 22 22 |
|||
-q + ----- - ---- + ---- - ---- + ---- - ------- + 19 Sqrt[q] - |
-q + ----- - ---- + ---- - ---- + ---- - ------- + 19 Sqrt[q] - |
||
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
11/2 9/2 7/2 5/2 3/2 Sqrt[q] |
||
| Line 72: | Line 81: | ||
3/2 5/2 7/2 9/2 |
3/2 5/2 7/2 9/2 |
||
14 q + 8 q - 4 q + q</nowiki></pre></td></tr> |
14 q + 8 q - 4 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[11, Alternating, 159]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 4 3 3 2 2 4 4 2 4 |
||
3 + q - q + --- - --- + --- + -- - -- + -- - -- - q - q + |
3 + q - q + --- - --- + --- + -- - -- + -- - -- - q - q + |
||
14 12 10 8 6 4 2 |
14 12 10 8 6 4 2 |
||
| Line 80: | Line 89: | ||
6 8 10 12 14 |
6 8 10 12 14 |
||
5 q - 2 q + q + q - q</nowiki></pre></td></tr> |
5 q - 2 q + q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[11, Alternating, 159]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 3 |
||
1 2 a 2 a a z 5 z 3 5 z |
1 2 a 2 a a z 5 z 3 5 z |
||
-(---) + --- - ---- + -- + -- - --- + 8 a z - 6 a z + a z + -- - |
-(---) + --- - ---- + -- + -- - --- + 8 a z - 6 a z + a z + -- - |
||
| Line 91: | Line 100: | ||
---- + 9 a z - 5 a z + a z - ---- + 4 a z - 2 a z + a z |
---- + 9 a z - 5 a z + a z - ---- + 4 a z - 2 a z + a z |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[11, Alternating, 159]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 |
||
2 1 2 a 2 a a 2 z 10 z 3 5 |
2 1 2 a 2 a a 2 z 10 z 3 5 |
||
-a - --- - --- - ---- - -- + --- + ---- + 18 a z + 14 a z + 4 a z + |
-a - --- - --- - ---- - -- + --- + ---- + 18 a z + 14 a z + 4 a z + |
||
| Line 132: | Line 141: | ||
20 a z - 9 a z - ---- - 9 a z - 5 a z - z - a z |
20 a z - 9 a z - ---- - 9 a z - 5 a z - z - a z |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[11, Alternating, 159]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 1 3 1 6 3 8 6 |
||
12 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
12 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 |
2 14 6 12 5 10 5 10 4 8 4 8 3 6 3 |
||
Revision as of 18:30, 2 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a159's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X22,10,7,9 X2738 X4,22,5,21 X14,5,15,6 X16,11,17,12 X20,17,21,18 X18,14,19,13 X12,20,13,19 X6,15,1,16 |
| Gauss code | {1, -4, 2, -5, 6, -11}, {4, -1, 3, -2, 7, -10, 9, -6, 11, -7, 8, -9, 10, -8, 5, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^4-4 u^2 v^3+6 u^2 v^2-4 u^2 v+u^2-2 u v^4+9 u v^3-15 u v^2+9 u v-2 u+v^4-4 v^3+6 v^2-4 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-4 q^{7/2}+8 q^{5/2}-14 q^{3/2}+19 \sqrt{q}-\frac{22}{\sqrt{q}}+\frac{22}{q^{3/2}}-\frac{20}{q^{5/2}}+\frac{14}{q^{7/2}}-\frac{9}{q^{9/2}}+\frac{4}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^3+a^5 z+a^5 z^{-1} -2 a^3 z^5-5 a^3 z^3+z^3 a^{-3} -6 a^3 z+z a^{-3} -2 a^3 z^{-1} +a z^7+4 a z^5-2 z^5 a^{-1} +9 a z^3-5 z^3 a^{-1} +8 a z-5 z a^{-1} +2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^5-a^7 z^3+4 a^6 z^6-5 a^6 z^4+a^6 z^2+8 a^5 z^7-13 a^5 z^5+9 a^5 z^3-4 a^5 z+a^5 z^{-1} +9 a^4 z^8-12 a^4 z^6+z^6 a^{-4} +6 a^4 z^4-2 z^4 a^{-4} -2 a^4 z^2+z^2 a^{-4} +5 a^3 z^9+9 a^3 z^7+4 z^7 a^{-3} -36 a^3 z^5-10 z^5 a^{-3} +36 a^3 z^3+8 z^3 a^{-3} -14 a^3 z-2 z a^{-3} +2 a^3 z^{-1} +a^2 z^{10}+20 a^2 z^8+6 z^8 a^{-2} -46 a^2 z^6-12 z^6 a^{-2} +35 a^2 z^4+6 z^4 a^{-2} -10 a^2 z^2-z^2 a^{-2} +a^2+9 a z^9+4 z^9 a^{-1} +2 a z^7+5 z^7 a^{-1} -43 a z^5-31 z^5 a^{-1} +48 a z^3+30 z^3 a^{-1} -18 a z-10 z a^{-1} +2 a z^{-1} + a^{-1} z^{-1} +z^{10}+17 z^8-43 z^6+32 z^4-9 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



