Invariant Definition Table: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 220: | Line 220: | ||
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
<!-- Invariant name --> <td>Smooth 4-Genus</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- |
<!-- KnotInfoTag = --> <td>smooth_4_genus</td> |
||
<!-- ReadLivingston = --> <td>FromLivingstonString</td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 229: | Line 228: | ||
<!-- Invariant name --> <td>Topological 4-Genus</td> |
<!-- Invariant name --> <td>Topological 4-Genus</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- |
<!-- KnotInfoTag = --> <td>topological_4_genus</td> |
||
<!-- ReadLivingston = --> <td>FromLivingstonString</td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>4D Invariant</td> |
<!-- Type = --> <td>4D Invariant</td> |
||
Line 238: | Line 236: | ||
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
<!-- Invariant name --> <td>Thurston-Bennequin Number</td> |
||
<!-- KnotTheory = --> <td></td> |
<!-- KnotTheory = --> <td></td> |
||
<!-- |
<!-- KnotInfoTag = --> <td>thurston_bennequin_number</td> |
||
<!-- ReadLivingston = --> <td>(ToExpression/@StringCases[#,"["~~a__~~"]":>a]&)</td> |
|||
<!-- ReadWiki = --> <td></td> |
<!-- ReadWiki = --> <td></td> |
||
<!-- Type = --> <td>3D Invariant</td> |
<!-- Type = --> <td>3D Invariant</td> |
Revision as of 02:44, 7 September 2005
Invariant name | KnotTheory | LivingstonTag | ReadLivingston | ReadWiki | Type | WikiPage |
---|---|---|---|---|---|---|
Crossings | Crossings | Link Presentation | Crossings | |||
Knot Number | KnotNumber | Link Presentation | Number | |||
Knotilus URL | KnotilusURL | Navigation | KnotilusURL | |||
Next Knot | NextKnot | Knot | Navigation | Next_Knot | ||
Previous Knot | PreviousKnot | Knot | Navigation | Previous_Knot | ||
Gauss Code | GaussCode | GaussCode | Link Presentation | Gauss_Code | ||
Planar Diagram | PD | PD | Link Presentation | PD_Presentation | ||
Dowker-Thistlethwaite Code | DTCode | DTCode | Knot Presentation | DT_Code | ||
SymmetryType | SymmetryType | SymmetryType | 3D Invariant | Symmetry_Type | ||
UnknottingNumber | UnknottingNumber | 3D Invariant | Unknotting_Number | |||
ThreeGenus | ThreeGenus | 3D Invariant | 3-Genus | |||
BridgeIndex | BridgeIndex | 3D Invariant | Bridge_Index | |||
SuperBridgeIndex | SuperBridgeIndex | 3D Invariant | Super_Bridge_Index | |||
NakanishiIndex | NakanishiIndex | 3D Invariant | Nakanishi_Index | |||
Jones | Jones[#1][q] & | Polynomial Invariant | Jones_Polynomial | |||
Alexander | Alexander[#1][t] & | Polynomial Invariant | Alexander_Polynomial | |||
Determinant | KnotDet | Polynomial Invariant | Determinant | |||
Signature | KnotSignature | Polynomial Invariant | Signature | |||
Conway | Conway[#1][z] & | Polynomial Invariant | Conway_Polynomial | |||
HOMFLYPT | HOMFLYPT[#1][a, z] & | Polynomial Invariant | HOMFLYPT_Polynomial | |||
Kauffman | Kauffman[#1][a, z] & | Polynomial Invariant | Kauffman_Polynomial | |||
Vassiliev2 | Vassiliev[2] | Vassiliev Invariant | V_2 | |||
Vassiliev3 | Vassiliev[3] | Vassiliev Invariant | V_3 | |||
Smooth 4-Genus | smooth_4_genus | 4D Invariant | Smooth4Genus | |||
Topological 4-Genus | topological_4_genus | 4D Invariant | Topological4Genus | |||
Thurston-Bennequin Number | thurston_bennequin_number | 3D Invariant | ThurstonBennequinNumber |