3 1 Quantum Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 2: Line 2:


<!-- automatically generated by QuantumInvariantPageRobot.nb, do not edit until after END comment -->
<!-- automatically generated by QuantumInvariantPageRobot.nb, do not edit until after END comment -->
{{Quantum invariant table start|algebra=A1}}
{{Quantum invariant table start|knot=3_1|algebra=A1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=1}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=2}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=2}}
Line 8: Line 8:
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=4}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=4}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=5}}
{{Quantum invariant table entry|knot=3_1|algebra=A1|weight=5}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A1}}
{{Quantum invariant table start|algebra=A2}}
{{Quantum invariant table start|knot=3_1|algebra=A2}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=1,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=2,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=2,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=3,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A2|weight=3,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A2}}
{{Quantum invariant table start|algebra=A3}}
{{Quantum invariant table start|knot=3_1|algebra=A3}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=0,1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=0,1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=A3|weight=1,0,1}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A3}}
{{Quantum invariant table start|algebra=A4}}
{{Quantum invariant table start|knot=3_1|algebra=A4}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=1,0,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=A4|weight=1,0,0,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=A4}}
{{Quantum invariant table start|algebra=B2}}
{{Quantum invariant table start|knot=3_1|algebra=B2}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=B2|weight=1,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=B2}}
{{Quantum invariant table start|algebra=D4}}
{{Quantum invariant table start|knot=3_1|algebra=D4}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=0,1,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=1,0,0,0}}
{{Quantum invariant table entry|knot=3_1|algebra=D4|weight=1,0,0,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=D4}}
{{Quantum invariant table start|algebra=G2}}
{{Quantum invariant table start|knot=3_1|algebra=G2}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=0,1}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=1,0}}
{{Quantum invariant table entry|knot=3_1|algebra=G2|weight=1,0}}
{{Quantum invariant table end}}
{{Quantum invariant table end|knot=3_1|algebra=G2}}
<!-- END of automatically generated section, feel free to edit below... -->
<!-- END of automatically generated section, feel free to edit below... -->

Revision as of 18:57, 4 December 2005

Because the braid index of 3_1 is only 2, it's easy to calculate lots of quantum invariants.

A1 Invariants.

Weight Invariant
1
2
3
4
5

A2 Invariants.

Weight Invariant
1,0
1,1
2,0
3,0

A3 Invariants.

Weight Invariant
0,1,0
1,0,0
1,0,1

A4 Invariants.

Weight Invariant
0,1,0,0
1,0,0,0

B2 Invariants.

Weight Invariant
0,1
1,0

D4 Invariants.

Weight Invariant
0,1,0,0
1,0,0,0

G2 Invariants.

Weight Invariant
0,1
1,0