Data:10 64/Integral Khovanov Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
{| border=1 cellspacing=0 cellpadding=1
{| border=1 cellspacing=0 cellpadding=1
|- align=center
|- align=center
|<math>\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}(10_64)</math>
|<math>\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}</math>
|<math>i=1</math>
|<math>i=1</math>
|<math>i=3</math>
|<math>i=3</math>

Revision as of 07:15, 27 June 2006

[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2^3 }[/math] [math]\displaystyle{ {\mathbb Z}^3 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^5\oplus{\mathbb Z}_2^3 }[/math] [math]\displaystyle{ {\mathbb Z}^4 }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^4\oplus{\mathbb Z}_2^4 }[/math] [math]\displaystyle{ {\mathbb Z}^4 }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^4\oplus{\mathbb Z}_2^4 }[/math] [math]\displaystyle{ {\mathbb Z}^4 }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^3\oplus{\mathbb Z}_2^4 }[/math] [math]\displaystyle{ {\mathbb Z}^4 }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^3 }[/math] [math]\displaystyle{ {\mathbb Z}^3 }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]