The knots 6_1 and 9_46 have the same Alexander polynomial. Their Jones polynomials are different, though:
I n [ 1 ] :=< / t t >< c o d e > J o n e s [ K n o t [ 6 , 2 ] ] [ q ] < / c o d e > O u t [ 1 ] =< / t t >< m a t h > q − 1 + 2 q − 2 q 2 + 2 q 3 − 2 q 4 + 1 q 5 {\displaystyle In[1]:=</tt><code>Jones[Knot[6,2]][q]</code>Out[1]=</tt><math>q-1+{\frac {2}{q}}-{\frac {2}{q^{2}}}+{\frac {2}{q^{3}}}-{\frac {2}{q^{4}}}+{\frac {1}{q^{5}}}}
Again:
In[1]:= Jones[Knot[6, 1]][q]
Jones[Knot[6, 1]][q]
I n [ 2 ] :=< / t t >< c o d e > J o n e s [ K n o t [ 9 , 46 ] ] [ q ] < / c o d e > O u t [ 2 ] =< / t t >< m a t h > 2 − 1 q + 1 q 2 − 2 q 3 + 1 q 4 − 1 q 5 + 1 q 6 {\displaystyle In[2]:=</tt><code>Jones[Knot[9,46]][q]</code>Out[2]=</tt><math>2-{\frac {1}{q}}+{\frac {1}{q^{2}}}-{\frac {2}{q^{3}}}+{\frac {1}{q^{4}}}-{\frac {1}{q^{5}}}+{\frac {1}{q^{6}}}}
In[2]:= Jones[Knot[6, 1]][q]