L11a127

From Knot Atlas
Revision as of 11:45, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11a126.gif

L11a126

L11a128.gif

L11a128

L11a127.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a127 at Knotilus!


Link Presentations

[edit Notes on L11a127's Link Presentations]

Planar diagram presentation X6172 X14,3,15,4 X22,10,5,9 X18,7,19,8 X8,17,9,18 X12,19,13,20 X20,11,21,12 X10,16,11,15 X16,22,17,21 X2536 X4,13,1,14
Gauss code {1, -10, 2, -11}, {10, -1, 4, -5, 3, -8, 7, -6, 11, -2, 8, -9, 5, -4, 6, -7, 9, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a127 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
6           1-1
4          3 3
2         61 -5
0        103  7
-2       117   -4
-4      129    3
-6     1011     1
-8    912      -3
-10   611       5
-12  28        -6
-14 16         5
-16 2          -2
-181           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a126.gif

L11a126

L11a128.gif

L11a128