L11n107

From Knot Atlas
Revision as of 11:46, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n106.gif

L11n106

L11n108.gif

L11n108

L11n107.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n107 at Knotilus!


Link Presentations

[edit Notes on L11n107's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,19,14,18 X17,11,18,10 X21,9,22,8 X7,17,8,16 X9,21,10,20 X15,5,16,22 X19,15,20,14 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -6, 5, -7, 4, -11, 2, -3, 9, -8, 6, -4, 3, -9, 7, -5, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n107 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
0123456789χ
22         1-1
20        2 2
18       51 -4
16      52  3
14     85   -3
12    65    1
10   68     2
8  56      -1
6 16       5
425        -3
23         3
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n106.gif

L11n106

L11n108.gif

L11n108