L11n217

From Knot Atlas
Revision as of 11:52, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n216.gif

L11n216

L11n218.gif

L11n218

L11n217.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n217 at Knotilus!


Link Presentations

[edit Notes on L11n217's Link Presentations]

Planar diagram presentation X10,1,11,2 X8,9,1,10 X3,12,4,13 X15,22,16,9 X17,3,18,2 X21,4,22,5 X5,15,6,14 X13,21,14,20 X11,16,12,17 X19,7,20,6 X7,19,8,18
Gauss code {1, 5, -3, 6, -7, 10, -11, -2}, {2, -1, -9, 3, -8, 7, -4, 9, -5, 11, -10, 8, -6, 4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n217 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^5+z a^5-z^5 a^3-z^3 a^3-2 z^5 a-5 z^3 a-3 z a+a z^{-1} +2 z^3 a^{-1} +2 z a^{-1} - a^{-1} z^{-1} } (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
6         2-2
4        4 4
2       42 -2
0      84  4
-2     66   0
-4    66    0
-6   46     2
-8  26      -4
-10 14       3
-12 2        -2
-141         1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n216.gif

L11n216

L11n218.gif

L11n218