L10a56
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a56's Link Presentations]
| Planar diagram presentation | X8192 X16,7,17,8 X10,4,11,3 X12,5,13,6 X20,12,7,11 X18,13,19,14 X2,15,3,16 X4,19,5,20 X14,10,15,9 X6,18,1,17 |
| Gauss code | {1, -7, 3, -8, 4, -10}, {2, -1, 9, -3, 5, -4, 6, -9, 7, -2, 10, -6, 8, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^4-4 u^2 v^3+6 u^2 v^2-4 u^2 v+u^2-2 u v^4+8 u v^3-13 u v^2+8 u v-2 u+v^4-4 v^3+6 v^2-4 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{11}{q^{9/2}}-q^{7/2}+\frac{16}{q^{7/2}}+5 q^{5/2}-\frac{21}{q^{5/2}}-11 q^{3/2}+\frac{22}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{5}{q^{11/2}}+16 \sqrt{q}-\frac{21}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a z^7-2 a^3 z^5+3 a z^5-z^5 a^{-1} +a^5 z^3-3 a^3 z^3+3 a z^3-z^3 a^{-1} -a z+a^3 z^{-1} -a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -5 a^3 z^9-5 a z^9-12 a^4 z^8-24 a^2 z^8-12 z^8-11 a^5 z^7-14 a^3 z^7-14 a z^7-11 z^7 a^{-1} -5 a^6 z^6+16 a^4 z^6+42 a^2 z^6-5 z^6 a^{-2} +16 z^6-a^7 z^5+16 a^5 z^5+39 a^3 z^5+39 a z^5+16 z^5 a^{-1} -z^5 a^{-3} +4 a^6 z^4-4 a^4 z^4-16 a^2 z^4+4 z^4 a^{-2} -4 z^4-6 a^5 z^3-18 a^3 z^3-18 a z^3-6 z^3 a^{-1} -a^3 z-a z-a^2+a^3 z^{-1} +a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



