L11n231
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L11n231's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X16,11,17,12 X5,21,6,20 X12,4,13,3 X14,8,15,7 X6,14,7,13 X17,9,18,22 X21,19,22,18 X8,9,1,10 X19,5,20,4 X2,16,3,15 | 
| Gauss code | {1, -11, 4, 10, -3, -6, 5, -9}, {9, -1, 2, -4, 6, -5, 11, -2, -7, 8, -10, 3, -8, 7} | 
| A Braid Representative | {{{braid_table}}} | 
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



