L11a187
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a187's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X20,14,21,13 X16,5,17,6 X4,15,5,16 X18,12,19,11 X22,18,7,17 X14,20,15,19 X12,22,13,21 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, 6, -9, 3, -8, 5, -4, 7, -6, 8, -3, 9, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 t(1) t(2)^4+2 t(1)^2 t(2)^3-7 t(1) t(2)^3+4 t(2)^3-5 t(1)^2 t(2)^2+11 t(1) t(2)^2-5 t(2)^2+4 t(1)^2 t(2)-7 t(1) t(2)+2 t(2)+2 t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{7}{q^{9/2}}-3 q^{7/2}+\frac{10}{q^{7/2}}+6 q^{5/2}-\frac{15}{q^{5/2}}-10 q^{3/2}+\frac{16}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+14 \sqrt{q}-\frac{16}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^3+a^5 z+a^5 z^{-1} -a^3 z^5-a^3 z^3+z^3 a^{-3} -a^3 z+z a^{-3} -2 a z^5-z^5 a^{-1} -4 a z^3-z^3 a^{-1} -4 a z-2 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^{10}-z^{10}-4 a^3 z^9-7 a z^9-3 z^9 a^{-1} -6 a^4 z^8-9 a^2 z^8-4 z^8 a^{-2} -7 z^8-6 a^5 z^7+4 a^3 z^7+16 a z^7+3 z^7 a^{-1} -3 z^7 a^{-3} -3 a^6 z^6+12 a^4 z^6+29 a^2 z^6+10 z^6 a^{-2} -z^6 a^{-4} +25 z^6-a^7 z^5+15 a^5 z^5+a^3 z^5-20 a z^5+4 z^5 a^{-1} +9 z^5 a^{-3} +5 a^6 z^4-9 a^4 z^4-38 a^2 z^4-7 z^4 a^{-2} +3 z^4 a^{-4} -34 z^4+2 a^7 z^3-15 a^5 z^3-5 a^3 z^3+17 a z^3-2 z^3 a^{-1} -7 z^3 a^{-3} +19 a^2 z^2+4 z^2 a^{-2} -2 z^2 a^{-4} +25 z^2+7 a^5 z-9 a z-z a^{-1} +z a^{-3} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



