L11n384

From Knot Atlas
Revision as of 12:06, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n383.gif

L11n383

L11n385.gif

L11n385

L11n384.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n384 at Knotilus!


Link Presentations

[edit Notes on L11n384's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X10,6,11,5 X8493 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X16,10,17,9 X2,14,3,13
Gauss code {1, -11, 5, -3}, {-8, 7, 9, -6}, {4, -1, 2, -5, 10, -4, -7, 8, 11, -2, 3, -10, 6, -9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n384 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        2 -2
9       31 2
7      52  -3
5     63   3
3    45    1
1   76     1
-1  48      4
-3 23       -1
-5 4        4
-72         -2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n383.gif

L11n383

L11n385.gif

L11n385