L10a14

From Knot Atlas
Revision as of 12:07, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L10a13.gif

L10a13

L10a15.gif

L10a15

L10a14.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a14 at Knotilus!


Link Presentations

[edit Notes on L10a14's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X14,8,15,7 X20,16,5,15 X16,9,17,10 X8,19,9,20 X18,13,19,14 X12,17,13,18 X2536 X4,12,1,11
Gauss code {1, -9, 2, -10}, {9, -1, 3, -6, 5, -2, 10, -8, 7, -3, 4, -5, 8, -7, 6, -4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a14 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
8          11
6         3 -3
4        61 5
2       63  -3
0      106   4
-2     88    0
-4    78     -1
-6   58      3
-8  27       -5
-10 15        4
-12 2         -2
-141          1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{10}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a13.gif

L10a13

L10a15.gif

L10a15