L11n253
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n253's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,3,15,4 X9,18,10,19 X5,16,6,17 X22,7,11,8 X6,21,7,22 X20,15,21,16 X17,8,18,9 X19,4,20,5 X2,11,3,12 X10,13,1,14 |
| Gauss code | {1, -10, 2, 9, -4, -6, 5, 8, -3, -11}, {10, -1, 11, -2, 7, 4, -8, 3, -9, -7, 6, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^4 \left(-v^3\right)-u^3 v^4+u^3 v^3-u^3 v-u^2 v^2-u v^3+u v-u-v}{u^2 v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}+z^5 a^{11}+6 z^3 a^{11}+7 z a^{11}+a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-10 z^3 a^9-6 z a^9-a^9 z^{-1} -z^7 a^7-6 z^5 a^7-10 z^3 a^7-5 z a^7 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z^5-5 a^{15} z^3+5 a^{15} z-a^{14} z^2-2 a^{13} z^3+2 a^{13} z+a^{12} z^8-7 a^{12} z^6+14 a^{12} z^4-10 a^{12} z^2+a^{11} z^9-7 a^{11} z^7+16 a^{11} z^5-18 a^{11} z^3+9 a^{11} z-a^{11} z^{-1} +2 a^{10} z^8-12 a^{10} z^6+19 a^{10} z^4-9 a^{10} z^2+a^{10}+a^9 z^9-6 a^9 z^7+11 a^9 z^5-11 a^9 z^3+7 a^9 z-a^9 z^{-1} +a^8 z^8-5 a^8 z^6+5 a^8 z^4+a^7 z^7-6 a^7 z^5+10 a^7 z^3-5 a^7 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



